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In brief

Linde et al. describe a cancer therapy that

activates neutrophils to infiltrate and

eradicate tumors and reduce metastatic

seeding. The authors elucidate the

responsible mechanism, which involves

complement component C5a, leukotriene

B4, and reactive oxygen species, and

demonstrate the potential of harnessing

neutrophils through inflammatory

activation to drive tumor clearance.
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SUMMARY
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression,
tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer
immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to
induce eradication of tumors and reducemetastatic seeding through the combined actions of tumor necrosis
factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils
in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization
and tumor infiltration of neutrophils along with complement activation in tumors. Complement component
C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production
via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance ofmultiple tumor types.
These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory
pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
INTRODUCTION

Although initially appreciated for their role in defense against mi-

crobial pathogens, neutrophils are now recognized to promote

the growth and spread of many cancers.1–3 Cancers are

frequently accompanied by neutrophil recruitment to the tumor

and expansion in the blood, which is associated with poor

prognosis in most cases.1,2,4,5 Studies of neutrophils from

cancer patients and mouse models have established that

neutrophils promote tumor growth,6 angiogenesis,7,8 and

metastasis9–11 and inhibit anti-cancer T cell responses.9,12,13

Furthermore, myeloid-derived suppressor cells (MDSCs), a

heterogeneous group of cells that overlap phenotypically with

neutrophils,1,2,14 are well appreciated to induce T cell suppres-

sion and promote tumor growth and metastasis.2,14–16

Nonetheless, neutrophils have the potential to exert anti-tumor

activity. Early studies demonstrated the ability of neutrophils to

kill tumor cells in vitro,17 and although neutrophils exert pro-tu-

mor activity inmost settings,1,2 a growing number of studies sup-

port the potential for neutrophils to perform anti-tumor functions

in certain contexts. Neutrophils naturally can inhibit some tumors

during the early stages of tumor development18–21 or early

metastasis,22,23 and they are capable of promoting anti-tumor

responses by other immune cells, including natural killer (NK)
356 Cancer Cell 41, 356–372, February 13, 2023 ª 2023 Elsevier Inc.
cells and multiple subsets of T cells.19–21,24–26 The apparently

contradictory roles of neutrophils in cancer are likely the result

of differences in the tumor milieu affecting neutrophil maturation,

activation, and functional states.2,24,27

Despite the natural capacity of neutrophils to inhibit cancer in

certain contexts, little effort has been made to harness neutro-

phils as anti-tumor effector cells. Neutrophil-targeted treatments

have generally focused on depleting MDSCs or blocking the

recruitment of neutrophils and MDSCs to the tumor.2,14,28,29

Recently, targeted inhibition of receptors on neutrophils has

been shown to slow tumor growth by inhibiting pro-tumor func-

tions of neutrophils such as the promotion of angiogenesis30 and

T cell suppression.25 Additionally, inhibition of certain suppres-

sive signals can enhance killing of tumor cells by neutrophils

ex vivo,24 induce modest reductions in tumor growth,31 and pro-

mote activation of CD8+ T cells24 or NK cells26 to inhibit tumor

growth. Neutrophils can also kill antibody-bound tumor cells32

and mediate the effects of monoclonal antibody (mAb) therapy

initiated concurrently with tumor engraftment.33 Despite these

promising results, it is still not clear whether neutrophils can be

harnessed therapeutically to drive regression of established

tumors.

We set out to determine whether neutrophils in a tumor-

bearing host could be mobilized and activated to attack tumors.
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Using intratumoral injection of neutrophil stimuli and tumor-bind-

ing antibodies, we show that manipulation of the tumor milieu

can result in the infiltration and activation of tumor-killing neutro-

phils that drive T cell-independent tumor clearance. We further

reveal the mechanistic steps underlying this response, demon-

strating the ability of neutrophil-mediated inflammation to

generate a tumor-eradicating immune response and identifying

multiple promising targets for therapeutic intervention.

RESULTS

Neutrophil-activating therapy recruits activated
neutrophils to the tumor
To determine if neutrophils might be harnessed therapeutically,

we investigated how the tumor microenvironment could be

modulated to optimally recruit neutrophils and activate their

cytotoxic function. When we assessed the impact of various cy-

tokines injected intratumorally in B16 melanoma, tumor necrosis

factor (TNF) notably induced robust recruitment of neutrophils

(Figures S1A and S1B) and upregulated neutrophil surface mol-

ecules consistent with activation34–36 (Figures S1C and S1D) in a

dose-dependent manner (Figures S1E–S1G). However, TNF

monotherapy failed to clear tumors in most mice (Figure S1H).

Given the promising neutrophil infiltration and activation

induced by TNF but the failure to clear tumors, we sought com-

plementary agents capable of enabling neutrophil-mediated

tumor clearance in combination with TNF. As cluster of differen-

tiation 40 (CD40) agonists can activate neutrophils and promote

neutrophil cytotoxicity,37 we evaluated the effect of an agonistic

anti-CD40 monoclonal antibody. As neutrophils are also potent

mediators of antibody-dependent cellular cytotoxicity (ADCC)

through ligation of their Fc receptors,2,32 we also tested a mAb

targeting the melanoma-associated antigen gp75. Strikingly, in-

tratumoral treatment of tumors with two doses of 1 mg TNF +

100 mg anti-CD40 + 100 mg anti-gp75 two days apart induced du-

rable clearance of B16melanoma tumors (Figure 1A). In contrast,

treatment with only one or two of these components failed to

achieve the same frequency of tumor clearance (Figures S1I

and S1J). Mice treated with TNF + anti-CD40 + anti-gp75 tran-

siently lost a small amount of weight but rapidly recovered within

two days of the second treatment (Figure S1K). Additionally,

blood chemistry analysis one week after treatment completion

and 60 days post-treatment revealed essentially normal liver

and renal function (Figure S1L).

Mice treated with the full three-component therapy consisting

of TNF, anti-CD40, and tumor-binding antibody, hereafter

referred to as neutrophil-activating therapy, exhibited rapid

recruitment of neutrophils to tumors (Figures 1B and 1C), and

neutrophils expanded in the blood with similar kinetics (Fig-

ure 1D). Treated neutrophils infiltrated throughout B16 tumors

and were not merely confined to the periphery (Figure 1E). Eval-

uation of the impact of individual treatment components re-

vealed that neutrophil recruitment to tumors was primarily

induced by TNF (Figure 1F). Although TNF induced a transient in-

crease in neutrophil frequency in the blood (Figure 1G), anti-

CD40 induced a large and sustained expansion of neutrophils

in the blood (Figure 1H).

Flow cytometry analysis to identify hematopoietic stem cells

(HSCs) and progenitors (Figures S1M and S1N)38–40 in the
bone marrow 24 h after neutrophil-activating therapy revealed

an increase in the frequencies of HSCs and multipotent progen-

itors (MPPs) (Figure 1I). Although the full neutrophil-activating

therapy had a minimal effect on the frequency of common

lymphoid progenitors (CLPs), it induced a drastic reduction in

common myeloid progenitors (CMPs), granulocyte-monocyte

progenitors (GMPs), megakaryocyte-erythrocyte progenitors

(MEPs), and common monocyte progenitors (cMoPs), whereas

committed neutrophil progenitors (proNeu1s and proNeu2s)

were not significantly altered (Figures 1I and S1O). These data

indicate the induction of granulopoiesis. In addition, although

the frequency in the bone marrow of late neutrophil precursors

(preNeus) decreased with therapy, Ly6Glo immature neutrophils

increased, and Ly6Ghi mature neutrophils decreased (Figure 1I),

consistent with an increased differentiation of neutrophils in

the bone marrow and a mobilization of mature neutrophils into

the blood. Furthermore, the spleen displayed an expansion of

neutrophils and similar alterations in the frequencies of HSCs

and progenitors (Figure S1P), indicating extramedullary

granulopoiesis.

In mice lacking TNF receptors (TNFR knockout [KO] mice),

treatment with neutrophil-activating therapy failed to recruit or

activate neutrophils (Figures S2A–S2C). Although treatment

induced cell death throughout tumors in wild-type (WT) mice,

TNFR KO mice had reduced levels of cell death (Figures S2D

and S2E) and failed to clear their tumors following treatment

(Figure S2F). Tumor clearancewasmediated through TNF recep-

tor 1 (TNFR1) (Figure S2G) and was independent of TNFR1

expression on tumor cells (Figures S2H and S2I). These data

demonstrate that TNF signaling in non-tumor cells is essential

for neutrophil recruitment, tumor cell killing, and tumor clearance.

Neutrophil-activating therapy induced multiple alterations in

the surface phenotype of tumor-infiltrating neutrophils, primarily

in response to TNF (Figure 1J). These neutrophils upregulated

CD11b and intercellular adhesion molecule (ICAM)-1, indicating

activation or priming,34–36 and increased expression of CD177,

which has been associated with anti-tumor neutrophils in colon

cancer.41 Therapeutically activated neutrophils also had lower

levels of signal regulatory protein-a (SIRPa), a myeloid check-

point that inhibits neutrophil ADCC,2,32 suggesting the capacity

for enhanced tumor cell killing. Neutrophil-activating therapy

did not alter the expression of Siglec F, a marker associated

with pro-tumor neutrophils,42 which remained low in all treat-

ment conditions (Figure S2J). In contrast, treated neutrophils

downregulated, but did not lose, expression of CD101 (Fig-

ure S2K). CD101-negative neutrophils are more immature and

have been reported to correlate with tumor burden.38 Neutro-

phils in tumors treated with neutrophil-activating therapy

also upregulated CD14 and programmed cell death-ligand 1

(PD-L1), which have been reported to identify neutrophils with

increased suppressive and reduced tumoricidal activity.2,43,44

Neutrophils in the blood exhibited a very similar, but less

extreme, pattern of changes in expression of these markers

following neutrophil-activating therapy (Figure S2L). These alter-

ations in neutrophil phenotype were transient, as neutrophils in

both the tumor and blood increasingly reverted toward the

phenotype of neutrophils in mock treated mice over the first

week post-treatment (Figures 1K and S2M). Neutrophil-acti-

vating therapy of other tumors, including Sparkl.4640, a colon
Cancer Cell 41, 356–372, February 13, 2023 357
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Figure 1. Neutrophil-activating therapy recruits activated neutrophils to the tumor

(A) Left: tumor growth in B16-bearing mice following treatment with the indicated components, indicating mice with undetectable tumors at the conclusion of the

study in parentheses. Right: survival of the mice shown in the left panel. Mice were euthanized when tumors exceeded 100 mm2.

(B and C) Neutrophil frequency (B) and numbers (C) in B16 tumors following treatment with TNF + anti-CD40 + anti-gp75 (n = 5).

(D) Neutrophil frequency in peripheral blood following treatment with this neutrophil-activating therapy (n = 5).

(E) Immunofluorescence of neutrophil infiltration in B16 tumors following treatment with neutrophil-activating therapy. Scale bars, 500 mm.

(F–H) Neutrophil frequency in the tumor (F) and blood (G and H) 4 h (G) or 24 h (F and H) after treatment with the indicated components (n = 4).

(I) Frequencies of HSCs and progenitors in the bone marrow 24 h after treatment with neutrophil-activating therapy (anti-gp75, n = 4; other groups, n = 5).

(J) Representative histograms (top) and median fluorescence intensity (MFI) (bottom) of surface markers on neutrophils infiltrating B16 tumors 4 h after treatment

with the indicated components (n = 4).

(K) Surface marker expression on B16 tumor-infiltrating neutrophils following treatment with the full neutrophil-activating therapy (n = 4).

Statistics: log rank test with Bonferroni correction (A), one-way ANOVA with Tukey’s multiple-comparisons test (B–D and F–K). For all dot plots, the line indicates

the mean. Data are representative of 2 (B–E) or 3 (F–H) independent experiments or pooled from 2 experiments (A). See also Figures S1 and S2.
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Figure 2. Therapeutically activated neutrophils eradicate multiple tumor types and reduce metastatic seeding

(A) Lysis of B16 cells co-cultured with neutrophils isolated from treated tumors and stimulated in vitro with the indicated components (n = 4).

(B) Lysis of B16 cells co-cultured with neutrophils isolated from treated tumors or tumor-naive bonemarrow (BM), stimulated in vitrowith TNF + anti-CD40 + anti-

gp75 (n = 4).

(C) Lysis of B16 cells co-cultured with neutrophils isolated from treated tumors in WT or Fcer1g�/� mice, stimulated in vitro with TNF + anti-CD40 + anti-gp75 or

isotype control, with or without anti-CD16/CD32 to block FcgRs (n = 4).

(D) Signal from anti-gp75-Alexa Fluor 647 in neutrophils isolated from treated tumors or naive bonemarrow and cultured in vitrowith B16 cells together with TNF +

anti-CD40 + anti-gp75-Alexa Fluor 647 or no stimulation (BM, n = 3; tumor, n = 4).

(E and F) Percentage DiD+ neutrophils (E) and DiD MFI in DiD+ neutrophils (F) following co-culture of treated tumor neutrophils with DiD-labeled B16 and

stimulation in vitro with the indicated components (unstained/triple, n = 4; unstimulated/double, n = 3).

(G) Survival of B16-bearing WT or Fcer1g�/� mice following treatment with neutrophil-activating therapy (n = 10).

(H) Regimen for neutrophil depletion and therapy. Treatment was performed 4 h after administration of anti-Ly6G or isotype control on days 0 and 2.

(I and J) Representative TUNEL immunofluorescence (I) and quantification (J) in B16 tumors 24 h after treatment with neutrophil-activating therapy, following

neutrophil depletion with anti-Ly6G or isotype control. Scale bars, 500 mm. (isotype, n = 3; others, n = 4).

(K) Survival of B16-bearing mice administered anti-Ly6G or isotype control prior to neutrophil-activating therapy (n = 10).

(L–N) Survival of mice bearing LL/2 (L) (mock, n = 8; others, n = 10), 4T1 (M) (n = 10), and Sparkl.4640 (N) (mock, n = 8; isotype, n = 10; anti-Ly6G, n = 9) tumors

administered anti-Ly6G or isotype control prior to neutrophil-activating therapy.

(legend continued on next page)
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carcinoma cell line isolated from a genetically engineered mouse

model (Figures S2N and S2O), and 4T1 mammary carcinoma

(Figures S2P and S2Q) induced similar neutrophil expansion,

recruitment, and activation.

Furthermore, treated tumor-infiltrating neutrophils possessed

a mature morphology with hypersegmented nuclei (Figure S2R).

Consistent with their activated status, they exhibited enhanced

production of reactive oxygen species (ROS) (Figures S2S–

S2U). Although activated neutrophils can extrude neutrophil

extracellular traps (NETs), neutrophils in the tumor and blood

of treated mice exhibited no detectable increase in NETotic neu-

trophils45 (Figures S2V and S2W). Altogether, these data indicate

that neutrophil-activating therapy induces an acute activation of

tumor-infiltrating and circulating neutrophils, which exhibit a

unique surface phenotype including markers associated with

both anti-tumor and pro-tumor function.

Therapeutically activated neutrophils eradicate
multiple tumor types and reduce metastatic seeding
To directly evaluate the anti-tumor activity of neutrophils

following neutrophil-activating therapy, neutrophils were iso-

lated from treated B16 tumors and co-cultured with B16 tumor

cells ex vivo. Following stimulation ex vivo with neutrophil-acti-

vating therapy, these neutrophils mediated potent tumor cell

killing (Figure 2A). In contrast, neutrophils isolated from the

bone marrow of naive mice failed to mediate significant tumor

cell killing, even after ex vivo stimulation with neutrophil-acti-

vating therapy (Figure 2B). Notably, stimulation with all three

components of the therapy was required for maximal cytotoxic

function (Figure 2A). Tumor-infiltrating neutrophils required

both anti-gp75 and Fc gamma receptors (FcgRs) to kill B16 tu-

mor cells ex vivo (Figure 2C), and tumor-infiltrating neutrophils

stimulated with neutrophil-activating therapy demonstrated

enhanced uptake of anti-gp75 mAb (Figure 2D) and B16 cell

membrane (Figures 2E and 2F), suggesting that antibody-medi-

ated trogocytosis32 may mediate ADCC by these activated neu-

trophils. Mice lacking functional activating FcgRs (Fcer1g�/�) ex-
hibited reduced tumor clearance in vivo (Figures 2G and S3A),

while neutrophil recruitment and CD11b upregulation were still

maintained (Figures S3B–S3D). B16 tumors that recurred

following therapy exhibited reduced levels of the antibody target

antigen gp75, suggesting that ADCCmay exert a selection pres-

sure against the antibody target antigen (Figure S3E). Treatment

of mice bearing B16 tumors with heterogeneous expression of

cell-surface enhanced green fluorescent protein (EGFP) with

TNF + anti-CD40 + anti-EGFP induced tumor clearance at a

comparable rate as tumorswith homogeneous EGFP expression

(Figure S3F). Altogether, these data suggest that tumor-binding
(O) Percentage of MMTV-PyMTmice with treated tumors below the threshold of 1

or isotype control (mock, n = 8; others, n = 6).

(P) Representative images of B16-tdTomato fluorescence in the lung (left) and qua

in mice bearing subcutaneous (s.c.) B16 tumors that were injected intravenously t

hours after tail vein injection, s.c. tumors were treated with mock or neutrophil-ac

vein injection. Lung borders are outlined in white. Scale bars, 1 mm (mock, n = 8

(Q) Representative image of India ink-stained lungs (left) and number of lung me

neutrophil-activating therapy or mock treatment (mock, n = 8; treated, n = 9).

Statistics: two-way ANOVA with Tukey’s multiple-comparisons test (A–D), one-w

and K), log rank test with Bonferroni correction (L–O), unpaired two-tailed t test (P a

(A–J and P) or 3 (K) independent experiments or pooled from 2 (Q), 3 (L–N), or 6
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antibody-FcgR interactions enhance in vivo neutrophil killing of

tumors through ADCC, but this is not absolutely required for tu-

mor clearance.

To determine the role of therapeutically activated neutrophils

in tumor clearance in vivo, neutrophils were depleted using

anti-Ly6G antibodies (Figure 2H). Although neutrophil depletion

with anti-Ly6G did not completely remove neutrophils, this pro-

tocol blocked treatment-induced neutrophil tumor infiltration

and reduced neutrophil expansion in the blood (Figures S3G–

S3L). Similar results were obtained across multiple tumor

models (Figures S3M–S3R).

Depletion of neutrophils with anti-Ly6GmAb prior to treatment

markedly reduced cell death within tumors (Figures 2I and 2J).

Although neutrophil depletion did not alter tumor growth in un-

treated mice (Figure S3S), it completely prevented tumor clear-

ance in response to neutrophil-activating therapy (Figures 2K

and S3T), demonstrating a crucial role for neutrophils in tumor

eradication. Treatment with neutrophil-activating therapy

enabled neutrophils to clear multiple additional tumor types,

including LL/2 lung carcinoma, 4T1 mammary carcinoma, and

Sparkl.4640 colon carcinoma (Figures 2L–2N and S3U–S3W).

We next tested neutrophil-activating therapy in the MMTV-

PyMTmodel of mammary carcinoma, in which tumors spontane-

ously develop in multiple breasts nearly simultaneously. Treat-

ment of one tumor per mouse resulted in neutrophil-dependent

regression of the treated tumors (Figures 2O and S3X), whereas

tumors in untreated breasts did not regress. Tumors later grew

out in treated breasts, which could represent either recurrences

of the treated tumor or development of additional tumors in the

same breast.

To determine whether neutrophil-activating therapy could

restrict the growth of distant tumors in the context of metastasis,

we injected B16 expressing tdTomato into the tail vein one week

after subcutaneous implantation of B16. Treatment of the subcu-

taneous tumor ten hours after this seeding of the lungs resulted

in a substantial reduction in the number and size of lung metas-

tases (Figure 2P). Furthermore, treatment of orthotopically im-

planted 4T1 mammary carcinoma with neutrophil-activating

therapy reduced the number of spontaneous lung metastases

(Figure 2Q). These data indicate that neutrophil-activating ther-

apy can reduce metastatic seeding, restrict metastatic growth,

and/or eliminate metastases.

Therapy activates antigen-presenting cells and primes
T cell memory
Neutrophil infiltration following treatment was accompanied by a

TNF-dependent decrease in multiple other immune cell popula-

tions within the tumor (Figures 3A and S4A–S4C). Additionally,
00mm2 following treatment of one tumor per mouse in the context of anti-Ly6G

ntification of the number and average area of tdTomato+ lungmetastases (right)

hrough the tail vein with B16-tdTomato one week after tumor implantation. Ten

tivating therapy, and the lungs were harvested and imaged 9 days after the tail

; treated, n = 9).

tastases (right) 30 days after orthotopic implantation of 4T1, in mice receiving

ay ANOVA with Tukey’s multiple-comparisons test (E, F, and J), log rank test (F

nd Q). For all dot plots, the line indicates themean. Data are representative of 2

(O) experiments. See also Figure S3.
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Figure 3. Therapy activates antigen-presenting cells and primes T cell memory
(A) Frequency of immune cell subsets in B16 tumors 24 h after treatment (n = 4).

(B) Percentage of cDC2s out of total DCs in B16 tumors 24 h after treatment (n = 4).

(legend continued on next page)
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conventional dendritic cell (cDC) populations were skewed

further toward cDC2s (Figure 3B), and the relative frequency

of CD8+ T cells decreased slightly after treatment (Figure 3C).

Treatment of TNFR KO mice with neutrophil-activating therapy

did not induce the large alterations to immune cell populations

seen in treated WT mice (Figures S4D and S4E). In contrast,

treated Fcer1g�/� mice had alterations in immune subsets

closely resembling treated WT mice (Figures S4F and S4G).

The anti-CD40-dependent expansion of neutrophils in the blood

(Figure 1H) was counterbalanced by a decrease in blood B cell

frequency, and anti-CD40 increased the proportion of circulating

CD4+ Forkhead box P3– (Foxp3–) T cells at the expense of CD8+

T cells (Figures S4H–S4J). Treatment of 4T1 and Sparkl.4640 tu-

mors with neutrophil-activating therapy elicited similar changes

in immune cell populations (Figures S4K–S4Q).

TNF and CD40 agonists are capable of activating antigen-pre-

senting cells (APCs); indeed, both agents induced upregulation

of major histocompatibility complex class II (MHCII), CD80,

and CD86 on cDC1s in B16 tumors (Figure 3D), indicating activa-

tion. In contrast, there were minimal changes in activation

markers in the more abundant cDC2s and macrophages, other

than CD80 upregulation in cDC2s (Figure 3D). Opposing this

activation, all three APC subsets upregulated PD-L1 with

treatment (Figure 3D). Macrophage polarization, assessed by

the ratio of CD206hi to MHCIIhi macrophages, did not change

significantly following therapy (Figure S5A). Sparkl.4640 and

4T1 tumors treated with neutrophil-activating therapy exhibited

mostly similar patterns of APC activation (Figures S5B–S5E).

Altogether, these data indicate that neutrophil-activating therapy

induces activation of APCs in the tumor, although this activation

is mainly confined to the relatively rare cDC1 subset.

To determine the effects of neutrophil-activating therapy on

T cells, we examined blood, tumor-draining lymph nodes

(dLNs), and tumors one week after treatment of B16 tumors.

Although T cells in the blood did not expand (Figures 3E

and 3F), there was an anti-CD40-dependent increase in the pro-

portion of CD8+ T cells (Figure 3G), as well as a large shift in both

CD8+ T cells and CD4+Foxp3– T cells from a naive CD62L+CD44–

phenotype to a CD62L–CD44+ Killer cell lectin-like receptor

G1– (KLRG1–) effector memory/memory precursor effector

phenotype and a CD62L–CD44+KLRG1+ phenotype that could

encompass both short-lived effectors and future memory
(C) Percentage of T cell subsets out of total T cells in B16 tumors 24 h after treat

(D) Representative histograms and MFIs for markers expressed on APC populat

(E and F) Frequencies (E) and numbers (F) of T cells in the blood 7 days after tre

(G) Percentage of T cell subsets out of total T cells in the blood 7 days after trea

(H) Memory and effector phenotypes of T cell subsets in the blood 7 days after t

(I) Representative histograms and MFIs for markers expressed on T cell subsets

(J and K) Frequencies (J) and numbers (K) of T cells in the dLN 7 days after treat

(L) Percentage of T cell subsets out of total T cells in the dLN 7 days after treatm

(M) Memory and effector phenotypes of T cell subsets in the dLN 7 days after tre

(N) Representative histograms and MFIs for markers expressed on T cell subset

(O and P) Frequencies (O) and numbers (P) of T cells in the tumor 7 days after tre

(Q) Percentage of T cell subsets out of total T cells in the tumor 7 days after trea

(R) Survival of B16-bearing WT or Rag2�/� mice treated with neutrophil-activatin

(S) Survival of WT or Rag2�/� mice following implantation of B16 in tumor-naive

therapy (WT cleared, n = 14; Rag2�/� cleared, n = 18; WT naive, n = 10; Rag2�/�

Statistics: two-way ANOVA with Tukey’s multiple-comparisons test (A, E–I, L–N, a

and P), log rank test (R), log rank test with Bonferroni correction (S). For all dot p

(R) independent experiments. See also Figures S4 and S5.
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cells46 (Figure 3H). In addition, treatment activated CD8+ and

CD4+Foxp3– T cells, indicated by expression of CD69, pro-

grammed cell death protein-1 (PD-1), and the proliferation

marker Ki67 (Figure 3I). In the dLN, treatment induced an

expansion of T cells and a similar bias toward CD8+ T cells

(Figures 3J–3L), in addition to increased memory differentiation

(Figure 3M) and T cell activation (Figure 3N). The full neutro-

phil-activating therapy did not increase the numbers of tumor

T cells, although the proportion of CD8+ T cells increased

(Figures 3O–3Q). Examination of T cells in the 4T1 model re-

vealed a more blunted response, although certain commonal-

ities were preserved, including T cell proliferation in the

blood and dLN, activation and memory differentiation in the

dLN, and elevated proportions of CD8+ T cells in the tumor

(Figures S5F–S5Q).

To investigate the role of adaptive immunity in tumor clear-

ance, we treated Rag2�/� mice, which lack mature T cells and

B cells. Neutrophil-activating therapy cleared B16 tumors in

bothWT andRag2�/�mice (Figures 3R and S5R–S5T). Nonethe-

less, WT mice that had previously cleared B16 were protected

from re-challenge with the same tumor, in contrast to Rag2�/�

mice or naive WT mice (Figures 3S and S5U), indicating that

neutrophil-activating therapy is capable of priming anti-tumor

adaptive immune memory, even though this is not required for

initial tumor clearance. These data are consistent with the low

number of T cells in the tumor and the large-scale T cell activa-

tion, proliferation, and memory differentiation in the blood and

dLN observed post-treatment.

Complement activates tumor-infiltrating neutrophils
through C5AR1
To identify the mechanism by which neutrophil-activating ther-

apy stimulates neutrophils, we investigated the complement

system, which generates products that are well known to stimu-

late neutrophil activation and recruitment.47 Within four hours of

treatment, complement component C3 was deposited on the

surface of tumor-infiltrating neutrophils (Figure 4A) and

throughout the tumor (Figures 4B and 4C), indicating local com-

plement activation. Complement deposition throughout the tu-

mor was dependent on TNF signaling (Figure S6A) with potential

contributions from anti-CD40 and anti-gp75 (Figures S6B–S6D).

Neutrophil depletion did not alter complement deposition
ment (n = 4).

ions in B16 tumors 24 h after treatment (n = 4).

atment of B16 (anti-gp75, n = 4; others, n = 5).

tment of B16 (anti-gp75, n = 4; others, n = 5).

reatment of B16 (anti-gp75, n = 4; others, n = 5).

in the blood 7 days after treatment (anti-gp75, n = 4; others, n = 5).
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g therapy (n = 15).
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Figure 4. Complement activates tumor-infiltrating neutrophils through C5AR1

(A) Deposition of C3 on B16 tumor-infiltrating neutrophils following treatment with neutrophil-activating therapy (n = 5).

(B and C) Representative immunofluorescence (B) and quantification (C) of C3 staining in B16 tumors after treatment. Scale bars, 500 mm (0 h, n = 3; others, n = 4).

(D and E) Representative immunofluorescence (D) and quantification (E) of TUNEL staining in B16 tumors 24 h after treatment of mice that had received CVF or

vehicle prior to treatment. Scale bars, 500 mm (mock, n = 4; vehicle, n = 5; CVF, n = 6).

(F) Survival of B16-bearing mice administered CVF prior to treatment with neutrophil-activating therapy (n = 5).

(G–I) Survival of B16-bearing mice administered anti-Factor B (G) (n = 7), anti-C5 (H) (isotype, n = 12; anti-C5, n = 5), and anti-C5AR1 (I) (n = 5) blocking antibodies

prior to treatment.

(J) Expression of CD11b on B16 tumor-infiltrating neutrophils 4 h after treatment following CVF or vehicle administration (vehicle, n = 4; others, n = 5).

(K) Expression of CD11b on naive neutrophils following stimulation in vitro with the indicated factors (n = 8).

(L) Lysis of B16 cells co-cultured with neutrophils isolated from treated tumors and stimulated in vitro with the indicated factors (n = 4).

Statistics: two-way ANOVA with Tukey’s multiple-comparisons test (A and L), one-way ANOVA with Tukey’s multiple-comparisons test (C, E, J, and K), log rank

test (F–I). For all dot plots, the line indicates the mean. Data are representative of 2 (A–C, F, G, and I–L) or 3 (D and E) independent experiments or pooled from 2

experiments (H). See also Figures S6 and S7.
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(Figures S6E–S6G), suggesting that complement activation oc-

curs upstream of neutrophil recruitment and activation.

Administration of cobra venom factor (CVF) to deplete com-

plement prior to treatment prevented complement activation

throughout tumors (Figures S6H and S6I), which mirrored the

results seen in C3�/� mice (Figure S6J). CVF administration or

C3 deficiency reduced tumor cell death following treatment

(Figures 4D, 4E, S7A, and S7B) and prevented tumor eradication

(Figures 4F, S7C, and S7D). Depletion of Factor B, which is

required for complement activation through the alternative

pathway (AP), as well as depletion or deficiency of the AP posi-

tive regulator properdin, blocked tumor clearance (Figures 4G

and S7E–S7G), implicating AP complement activation as a

crucial mediator of the treatment response.

The effect of complement activation was mediated through

complement component C5, as C5-depleted mice failed to clear

tumors (Figures 4H and S7H). Although cleavage of C5 both

generates the anaphylatoxin C5a and catalyzes the formation

of the membrane attack complex (MAC) through C5b,47 C6�/�

mice, which are incapable of forming theMAC, showed no deficit

in tumor clearance (Figure S7I). In contrast, blocking comple-

ment C5a receptor 1 (C5AR1) prevented tumor eradication

(Figures 4I and S7J), implicating C5a as the relevant complement

effector. Although complement deficiency did not induce amajor

deficit in neutrophil recruitment (Figures S7K and S7L), it

reduced neutrophil activation in response to treatment

(Figures 4J and S7M). In contrast, complement depletion did

not reduce activation of other myeloid populations in the tumor

(Figure S7N), suggesting that neutrophils are the main cell type

activated by complement. Additionally, recombinant C5a acti-

vated neutrophils in vitro (Figure 4K), and neutrophils isolated

from treated tumors required C5a or serum containing functional

complement to lyse tumor cells (Figures 4L and S7O). Altogether,

these data demonstrate that neutrophil-activating therapy

induces complement activation through the AP, which in turn

activates neutrophils through C5a-C5AR1 signaling to kill

tumors.

Secretion of leukotriene B4 by C5a-activated
neutrophils drives tumor clearance
To identify neutrophil-derived mediators that might contribute to

tumor clearance, we considered the potent pro-inflammatory

lipidmediator leukotriene B4 (LTB4).
48 Neutrophil-activating ther-

apy induced a neutrophil-dependent increase in LTB4 in the tu-

mor (Figures 5A and S8A), with neutrophils responsible for the

majority of LTB4 production (Figure 5B). Furthermore, LTB4 pro-

duction was dependent on TNF signaling and complement

(Figures 5C, S8B, and S8C), and stimulation of neutrophils with

C5a in vitro induced LTB4 (Figure 5D). Inhibition of LTB4 produc-

tion through the leukotriene A4 hydrolase (LTA4H) inhibitor

SC57461A prevented treatment-induced tumor cell death

(Figures 5E and S8D) and tumor clearance (Figures 5F and

S8E). The effects of LTB4 were mediated through LTB4 receptor

1 (BLT1), as the BLT1 antagonist CP-105696 also prevented tu-

mor clearance (Figures 5G and S8F), and SC57461A and CP-

105696 both prevented ex vivo killing of tumor cells by neutro-

phils (Figure 5H). These data demonstrate that C5a-activated

neutrophils mediate tumor eradication through LTB4 in response

to neutrophil-activating therapy.
364 Cancer Cell 41, 356–372, February 13, 2023
LTB4-dependent induction of xanthine oxidase induces
oxidative damage and tumor clearance
As LTB4

48 and C5a49 can induce production of ROS by neutro-

phils, and as ROS are potent effectors of neutrophil-mediated

cytotoxicity, we investigated the role of ROS in tumor clearance.

Neutrophil-activating therapy induced neutrophil-dependent

oxidative damage, as evidenced by oxidation of nucleic acids

(Figures 6A and 6B) and endogenous glutathione (Figure 6C)

within the tumor. This oxidation was dependent on TNF

signaling, complement, and LTB4 (Figures 6D, 6E, and S8G),

suggesting that production of LTB4 by C5a-activated neutrophils

drives the production of ROS and resulting oxidative damage in

the tumor. Scavenging of ROSwith reduced glutathione (GSH) or

neutralization of hydrogen peroxide with catalase blocked

ex vivo killing of tumor cells by tumor-infiltrating neutrophils

(Figure 6F), demonstrating that ROS mediate neutrophil killing

of tumor cells. Administration of GSH decreased tumor cell

death in vivo (Figures S8H and S8I) and prevented tumor clear-

ance (Figure S8J) following treatment. Furthermore, administra-

tion of catalase blocked tumor eradication in treated mice

(Figures 6G and S8K). These data demonstrate a critical role

for ROS, and specifically hydrogen peroxide, in neutrophil-

dependent tumor clearance following neutrophil-activating

therapy.

Despite the requirement for neutrophils and ROS, Ncf1�/�

mice, which lack the p47 subunit of the phagocyte nicotinamide

adenine dinucleotide phosphate oxidase complex (NOX) and fail

to produce ROS through phagocyte NOX, were still able to clear

tumors, albeit less efficiently than WT mice (Figure S8L). Given

these results, we sought an additional source of ROS in the

context of this treatment. Xanthine oxidoreductase is a bidirec-

tional enzyme capable of both xanthine dehydrogenase (XDH)

and xanthine oxidase (XO) activities, and XO can produce super-

oxide, serving as a source of ROS.50 Neutrophil-activating ther-

apy induced a neutrophil-dependent elevation in XO activity

within the tumor (Figure 6H), and depletion of complement and

inhibition of LTB4 prevented this increase in XO activity

(Figures 6I and 6J). XO inhibition with topiroxostat did not

prevent neutrophil infiltration or LTB4 production (Figures S8M

and S8N), indicating that XO activation occurs downstream of

neutrophil LTB4 production. Importantly, inhibition of XO by

topiroxostat prevented oxidation in tumors (Figure 6K), demon-

strating XO to be responsible for the ROS-mediated damage of

the tumor induced by treatment. Inhibition of XO also reduced

cell death (Figures 6L and S8O), prevented tumor clearance

(Figures 6M and S8P), and inhibited ex vivo tumor cell killing

(Figure 6N). Thus, following neutrophil-activating therapy, LTB4

production by complement-activated neutrophils induces ROS

production through XO, leading to oxidative damage of tumor

cells and subsequent tumor clearance.

Neutrophil-activating therapy activates human
neutrophils to kill tumor cells
To determine whether neutrophils could clear human tumors, we

treated Rag2�/� Il2rg�/� mice bearing A549 human lung carci-

noma or orthotopic MDA-MB-231 human mammary carcinoma

with neutrophil-activating therapy.Whereas neutrophil-sufficient

mice cleared the tumors, neutrophil-depleted mice were uni-

formly unable to do so (Figures 7A and 7B). We next examined
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Figure 5. Secretion of leukotriene B4 by C5a-activated neutrophils drives tumor clearance

(A) LTB4 levels in B16 tumors 24 h after treatment with neutrophil-activating therapy following neutrophil depletion by anti-Ly6G (mock, n = 7; others, n = 6).

(B) LTB4 produced ex vivo by cells harvested from B16 tumors 12 h after treatment (n = 11).

(C) LTB4 levels in B16 tumors 24 h after treatment following administration of CVF (n = 6).

(D) LTB4 production by naive neutrophils following stimulation in vitro with the indicated factors (n = 8).

(E) Quantification of TUNEL staining in B16 tumors 24 h after treatment with neutrophil-activating therapy following administration of SC57461A (vehicle, n = 3;

others, n = 4).

(F and G) Survival of B16-bearing mice after treatment following administration of SC57461A (F) (vehicle, n = 9; SC57461A, n = 8) or CP-105696 (G) (vehicle, n = 9;

CP-105696, n = 10).

(H) Lysis of B16 cells co-cultured with neutrophils isolated from treated tumors and stimulated in vitro with neutrophil-activating therapy together with the

indicated inhibitors (n = 4).

Statistics: one-way ANOVA with Tukey’s multiple-comparisons test (A and C–E), repeated-measures one-way ANOVA with Tukey’s multiple-comparisons test

(B), log rank test (F and G), two way ANOVA with Tukey’s multiple-comparisons test (H). For all dot plots, the line indicates the mean. Data are representative of 2

(A, C, D, and H) or 1 (E) independent experiment or pooled from 2 experiments (B, F, and G). See also Figure S8.
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whether human neutrophils could be activated in vitro using hu-

man versions of our neutrophil-activating therapy components.

Stimulation of neutrophils isolated from the peripheral blood of

healthy human donors with TNF + anti-CD40 + anti-EGFR mAb

induced the upregulation of multiple activation markers,

including CD11b and ICAM-1, which were also upregulated in

mouse neutrophils (Figure 7C). The FcgR CD32 was upregu-

lated, while CD16 was downregulated, consistent with reports

that it can be cleaved from the surface upon neutrophil activa-

tion.51 In addition, CD66b and CD63 were both upregulated on

the cell surface, indicating degranulation, while increased

DHR-123 staining indicated ROS production by the stimulated

neutrophils. Consistent with our findings in mice, C5a induced

upregulation of some activation markers and downregulation

of C5AR1, while the combined effect of C5a together with

neutrophil-activating therapy enhanced expression of CD63.

To determine whether these activated neutrophils could kill hu-

man tumor cells, we co-cultured neutrophils from healthy donors

with A549 human lung carcinoma cells. Stimulation with neutro-

phil-activating therapy induced high levels of tumor cell lysis,

albeit at higher neutrophil-to-tumor ratios than were necessary
with mouse neutrophils isolated from treated tumors (Figure 7D).

In agreement with our findings with mouse neutrophils, all three

components of neutrophil-activating therapy were required to

achieve efficient lysis of tumor cells (Figure 7E). These data sug-

gest that human neutrophils can be activated to kill tumor cells in

the same manner we described for mouse neutrophils.

DISCUSSION

On the basis of the findings reported here, we propose a

multistep mechanism by which neutrophils can be harnessed

to eradicate multiple types of tumors (Figure 8). TNF signals

through TNFR1 to induce neutrophil recruitment and activation

in the tumor. Anti-CD40 promotes neutrophil cytotoxicity and

granulopoiesis, and tumor-binding antibody enhances tumor

clearance through FcgR-mediated ADCC, potentially by trogo-

cytosis. These treatment components combine to activate

complement through the AP, inducing production of C5a. C5a

signaling through C5AR1 activates neutrophils to produce

LTB4, which drives XO activity in the tumor microenvironment.

ROS produced by XO induce oxidative damage and death of
Cancer Cell 41, 356–372, February 13, 2023 365
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Figure 6. LTB4-dependent induction of xanthine oxidase induces oxidative damage and tumor clearance

(A and B) Representative immunofluorescence (A) and quantification (B) of DNA/RNA oxidative damage in B16 tumors 24 h post-treatment with neutrophil-

activating therapy. Scale bars, 500 mm (n = 4).

(C–E) Percentage of oxidized glutathione in B16 lysates 24 h after treatment with neutrophil-activating therapy following administration of anti-Ly6G (C) (mock, n =

5; others, n = 6), CVF (D) (mock, n = 4; vehicle, n = 7; CVF, n = 6), or SC57461A (E) (mock, n = 5; vehicle, n = 8; SC57461A, n = 7).

(F) Lysis of B16 cells co-cultured with neutrophils isolated from treated tumors and stimulated in vitro with neutrophil-activating therapy together with the

indicated inhibitors (n = 4).

(G) Survival of B16-bearing mice treated with neutrophil-activating therapy following administration of catalase (n = 9).

(H–J) XO activity in the tumor 24 h after treatment of B16 with neutrophil-activating therapy following administration of anti-Ly6G (H) (isotype, n = 7; others, n = 8),

CVF (I) (n = 7), or SC57461A (J) (n = 7).

(K) Percentage of oxidized glutathione in B16 lysates 24 h after treatment following administration of topiroxostat (n = 5).

(L) Quantification of TUNEL staining in B16 tumors 24 h after treatment with neutrophil-activating therapy following administration of topiroxostat (n = 3).

(M) Survival of B16-bearing mice treated with neutrophil-activating therapy following administration of topiroxostat (vehicle, n = 9; topiroxostat, n = 8).

(N) Lysis of B16 cells co-cultured with neutrophils isolated from treated tumors and stimulated in vitro with neutrophil-activating therapy in the presence of

topiroxostat (n = 4).

Statistics: one-way ANOVA with Tukey’s multiple-comparisons test (B–E and H–L), two-way ANOVA with Tukey’s multiple-comparisons test (F and N), log rank

test (G andM). For all dot plots, the line indicates themean. Data are representative of 2 (F, I–K,M, and N) or 1 (A, B, and L) independent experiment or pooled from

2 experiments (C–E, G, and H). See also Figure S8.
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Figure 7. Neutrophil-activating therapy activates human neutrophils to kill tumors
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tumor cells, ultimately leading to tumor clearance. In contrast to

most previous reports of neutrophil anti-tumor activity,1,2 this

mechanism relies on activation of neutrophils rather than inhibi-

tion of their suppressive effects. Moreover, it is capable of

inducing eradication of multiple tumor types in immunocompe-

tent mice, it is effective when therapy is initiated after tumors

are already established, and it can reduce metastasis. Impor-

tantly, the same combination of therapeutic components that

eradicates tumors in mice activates human neutrophils to kill tu-

mors in vitro, suggesting that the therapy has the potential to

prove effective in patients.

The identification of C5a and LTB4 as crucial mediators of tu-

mor clearance in this mechanism is noteworthy, as previous

studies have shown that these molecules generally promote

cancer. Signaling through the C5a-C5AR1 axis recruits granulo-

cytes and MDSCs to the tumor, stimulates secretion of immuno-

suppressive factors by these and other tumor-resident myeloid

cells, and results in inhibition of T cell responses.49,52–56

Similarly, LTB4 can promote tumor growth by recruiting suppres-

sive neutrophils and MDSCs to the tumor,57–59 and neutrophil-

derived leukotrienes can support metastasis.10

However, in non-cancer contexts, C5a and LTB4 are potent in-

flammatory mediators that can induce neutrophil activation and

ROS-mediated tissue damage. AP activation on the neutrophil

surface can produce high local concentrations of C5a, inducing

neutrophil activation and extravasation into inflamed tissue.60,61

LTB4 promotes neutrophil ‘‘swarming’’ in the tissue and vascula-

ture, amplifying neutrophil activation, inflammation, and tissue

damage.62–64 Elements of the mechanism we describe, such

as AP-mediated complement activation, C5a-induced LTB4 pro-

duction by neutrophils, and C5a-dependent production of ROS

by neutrophils and XO, can contribute to tissue damage in

pathologies as diverse as inflammatory arthritis,60,65–67 fungal

sepsis,63 and acute lung injury.68

The immunotherapeutic strategy used in this study likely taps

into the neutrophil’s capacity for potent cytotoxic activation that

results in tissue damage in the context of these inflammatory pa-

thologies. Although dysregulated inflammation in the tumor can

induce pathological activation of neutrophils through chronic

exposure to factors such as C5a and LTB4, our work demon-

strates that these inflammatory mediators have the capacity to

drive tumor-eradicating neutrophil responses if applied with

the appropriate threshold and context. Although inhibitors of

C5AR1, LTB4 production, and BLT1 have been evaluated as

cancer treatments,49,59 our work here suggests an alternative

approach by which these pathways can be exploited to direct

neutrophil cytotoxic responses against the tumor.

Even though this mechanism of neutrophil-mediated tumor

clearance is not dependent on adaptive immunity, it can still

prime immune memory. Neutrophil-activating therapy induced

activation of DC populations, and we have shown previously
(C) Cell surface markers on neutrophils from the peripheral blood of healthy hu

(ICAM-1, n = 6; others, n = 8).

(D and E) Lysis of A549 cells co-cultured with neutrophils isolated from healthy

(n = 4).

Statistics: log-rank test with Bonferroni correction (A and B), one-way ANOVAwith

comparisons test (D and E). For all dot plots, the line indicates the mean. Data are

C) or 3 (A) experiments.
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that treatment with tumor-binding antibody in an immunostimu-

latory context induces tumor antigen uptake by APCs and prim-

ing of T cells.69,70 We observed activation, proliferation, and

memory differentiation of T cells in the blood and dLN following

neutrophil-activating therapy, and mice were protected from re-

challenge with the same tumor. As such, combination with T cell-

targeted treatments such as immune checkpoint blockade rep-

resents an attractive avenue for future study with the potential

to further enhance therapeutic efficacy. Moreover, the ability of

our neutrophil-activating approach to induce an inflammatory

cascade resulting in large-scale neutrophil infiltration and cyto-

toxicity within the tumor may help overcome barriers to the effi-

cacy of immune checkpoint blockade, such as ‘‘cold’’ tumors

with poor T cell infiltration.71 Additionally, although tumors could

downregulate the antibody target antigen in response to therapy,

as ADCC contributes to, but is not required for, tumor clearance,

neutrophil-activating therapy is likely to be robust against ac-

quired resistance that can limit the efficacy of other monoclonal

antibody therapies.

This study lays the groundwork for a neutrophil-activating

approach to cancer therapy with the potential to both reverse

neutrophil-mediated immunosuppression and activate anti-can-

cer immunity. As neutrophils are numerous, plastic, and can

amplify their own activation and recruitment, strategies to

harness their potential to function as anti-cancer effector cells

are an attractive option, and attempts to deplete or inhibit sup-

pressive neutrophil populations may squander this powerful

anti-cancer capacity. The present study defines therapeutic

conditions and an in vivo mechanism by which neutrophils can

be exploited to induce potent tumor eradication. Future work

can build upon the data presented here to rationally design

cancer therapies beyond the combination of agents used in

this study.

Limitations of the study
This study raises some questions that should be addressed prior

to potential clinical translation. First, the metastasis models were

treated at time points shortly after the initiation of metastatic

seeding,72 so future workwill be necessary to determinewhether

neutrophil-activating therapy can eliminate establishedmetasta-

ses or whether inhibition of metastatic seeding is the primary

anti-metastatic effect. Additionally, although blood chemistries

and body weight were normal one week and 60 days following

completion of treatment in mice, we did not perform a thorough

analysis of the safety and tolerability of our therapy, which will be

necessary prior to clinical translation. In this regard, systemically

infused TNF has a history of toxicity in cancer patients,73

although we used an intratumoral treatment approach that

should reduce systemic exposure to the injected agents. On

the other hand, although the intratumoral treatment approach

was highly effective, it limits the use of this therapy to accessible
man donors following stimulation with the indicated components for 30 min

donor peripheral blood and stimulated in vitro with the indicated components

Tukey’smultiple-comparisons test (C), two-way ANOVAwith Tukey’smultiple-

representative of 2 independent experiments (D and E) or pooled from 2 (B and
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tumors. Future work to develop systemic tumor-targeted deliv-

ery methods such as antibody conjugates and nanoparticles

may broaden the applicability and utility of neutrophil-activating

therapy.
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Purified Armenian Hamster IgG Bio X Cell Cat# BE0091; RRID: AB_1107773

Purified anti-Factor B, produced from

ATCC hybridoma

ATCC Cat# PTA-6230

Purified mouse IgG1 isotype control Bio X Cell Cat# BE0083; RRID: AB_1107784

Purified anti-properdin Produced as in Miwa et al.74 N/A

Purified anti-C5 Produced as in Miwa et al.74 N/A

Purified anti-C5AR1 BioLegend Cat# 135816; RRID: AB_2819876

Purified rat IgG2b isotype control Bio X Cell Cat# BE0090; RRID: AB_1107780

(Continued on next page)
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Purified anti-CD40 Bio X Cell Cat# BE0189; RRID: AB_10950314

Purified anti-EGFR Bio X Cell Cat# SIM0002; RRID: AB_2894723

Purified anti-GFP Bio X Cell Cat# RT0265; RRID: AB_2687789

Biological samples

De-identified human whole blood Stanford Blood Center N/A

Chemicals, peptides, and recombinant proteins

Recombinant mouse TNF BioLegend Cat# 575208

Recombinant mouse GM-CSF BioLegend Cat# 576302

Recombinant mouse IFNg BioLegend Cat# 575304

Recombinant mouse IL-1b BioLegend Cat# 575102

Recombinant mouse IL-17A BioLegend Cat# 576002

Recombinant mouse C5a R&D Systems Cat# 2150-C5-025/CF

Recombinant human TNF BioLegend Cat# 570104

Recombinant human C5a R&D Systems Cat# 2037-C5-025/CF

Cobra venom factor Millipore Sigma Cat# 233552-1MG

SC57461A Cayman Chemical Cat# 10108

CP-105696 Millipore Sigma Cat# PZ0363-25MG

Reduced L-glutathione Millipore Sigma Cat# G4251-25G

Catalase Millipore Sigma Cat# C40-500MG

Topiroxostat MedChem Express Cat# HY-14874

Luminol sodium salt Sigma Aldrich Cat# A4685

DiD’ solid ThermoFisher Scientific Cat# D7757

Critical commercial assays

In Situ Cell Death Detection Kit, TMR Red Millipore Sigma Cat# 12156792910

OxyBURST Green H2HFF BSA ThermoFisher Scientific Cat# O13291

Leukotriene B4 ELISA Kit Cayman Chemical Cat# 520111

GSH/GSSG Ratio Detection Kit II Abcam Cat# ab205811

Xanthine oxidase activity kit Abcam Cat# ab102522

DELFIA EuTDA cytotoxicity reagents PerkinElmer Cat# AD0116

Experimental models: Cell lines

Mouse: B16F10 ATCC Cat# CRL-6475

Mouse: LL/2 ATCC Cat# CRL-1642

Mouse: 4T1 ATCC Cat# CRL-2539

Human: A549 ATCC Cat# CRM-CCL-185

Human: MDA-MD-231 ATCC Cat# CRM-HTB-26

Experimental models: Organisms/strains

Mouse: C57BL6/J Jackson Laboratory Cat# 000664

Mouse: BALB/cJ Jackson Laboratory Cat# 000651

Mouse: MMTV-PyMT: FVB/N-Tg(MMTV-

PyVT)634Mul/J

Jackson Laboratory Cat# 002374

Mouse: Rag2-/-: B6(Cg)-Rag2tm1.1Cgn/J Jackson Laboratory Cat# 008449

Mouse: TNFR KO: B6.129S-

Tnfrsf1atm1Imx Tnfrsf1btm1Imx/J

Jackson Laboratory Cat# 003243

Mouse: C3-/-: B6.129S4-C3tm1Crr/J Jackson Laboratory Cat# 029661

Mouse: Ncf1-/-: B6N.129S2-Ncf1tm1Shl/J Jackson Laboratory Cat# 027331

Mouse: Rag2-/- Il2rg-/-: B6(Cg)-

Rag2tm1.1Cgn/J crossed with

B6.129S4-Il2rgtm1Wjl/J

Jackson Laboratory Cat# 008449 x Cat# 003174

Mouse: Cfp-/- Kimura et al.67 N/A

(Continued on next page)
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Mouse: C6-/- Ueda et al.75 N/A

Mouse: Fcer1g-/-: B6.129P2-

Fcer1gtm1Rav N12

Taconic Cat# 583

Oligonucleotides

See Table S1 for oligonucleotide

information

N/A N/A

Recombinant DNA

pSpCas9(BB)-2A-GFP (PX458) Ran et al.76 Addgene # 48138; RRID: Addgene_48138

pLVX-EF1a-IRES-Puro Clontech Cat# 631988

Software and algorithms

BD FACSDiva (v8) BD Biosciences https://www.bdbiosciences.com/en-us/

products/software/instrument-software/

bd-facsdiva-software

Zen black edition Zeiss https://www.zeiss.com/microscopy/us/

products/microscope-software/zen.html

Zen blue edition Zeiss https://www.zeiss.com/microscopy/us/

products/microscope-software/zen.html

BZ-X800 Viewer Keyence https://www.keyence.com/

BZ-X800 Analyzer Keyence https://www.keyence.com/

WorkOut 2.5 PerkinElmer https://www.perkinelmer.com/

FlowJo (v10) BD Biosciences https://www.flowjo.com/solutions/flowjo/

downloads

SpectroFlo V2.2.0.3 Cytek Biosciences https://cytekbio.com/blogs/resources/

spectroflo-v2-2-0-3-release-notes

Living Image Caliper Life Sciences https://www.perkinelmer.com/Product/li-

software-for-lumina-1-seat-add-on-

128110

ImageJ Fiji https://imagej.net/software/fiji/downloads

Photoshop CS6 Adobe https://www.adobe.com/products/

photoshop.html

Excel Microsoft https://www.microsoft.com/en-us/

microsoft-365/excel

GraphPad Prism (v9) GraphPad https://www.graphpad.com/scientific-

software/prism/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Edgar

Engleman (edengleman@stanford.edu).

Material availability
This study did not generate new unique reagents.

Data code and availability
d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
C57BL6/J (Jackson 000664), BALB/cJ (Jackson 000651), MMTV-PyMT (FVB/N-Tg(MMTV-PyVT)634Mul/J, Jackson 002374),

Rag2–/– (B6(Cg)-Rag2tm1.1Cgn/J, Jackson 008449), TNFR KO (B6.129S-Tnfrsf1atm1Imx Tnfrsf1btm1Imx/J, Jackson 003243), C3–/–
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(B6.129S4-C3tm1Crr/J, Jackson 029661), andNcf1–/– (B6N.129S2-Ncf1tm1Shl/J, Jackson 027331)micewere purchased from Jackson

Laboratory. Fcer1g–/– mice (B6.129P2-Fcer1gtm1Rav N12, Taconic 583) were purchased from Taconic. Rag2–/– Il2rg–/– mice were

generated by crossing B6(Cg)-Rag2tm1.1Cgn/J mice (Jackson 008449) with B6.129S4-Il2rgtm1Wjl/J mice (Jackson 003174). Cfp–/–

mice67,74 and C6–/– mice75 were generated as previously described. 8-12 week old female mice were used, and mice of different

experimental groups and genotypes were cohoused during all experiments, with the exception of immunocompromised Rag2–/–

mice. Mice were randomly assigned to experimental groups. All animal studies were performed in accordance with the Stanford Uni-

versity Institutional Animal Care and Use Committee under protocol APLAC-17466. All mice were housed in an American Association

for the Accreditation of Laboratory Animal Care-accredited animal facility and maintained in specific pathogen-free conditions.

Cell lines and culture
The mouse melanoma cell line B16F10, mouse lung carcinoma line LL/2, mouse mammary carcinoma line 4T1, human lung

carcinoma line A549, and humanmammary carcinoma line MDA-MB-231 were purchased from ATCC. To generate the mouse colon

carcinoma line Sparkl.4640 (Syngeneic P53 APC ROSA26-LSL-eYFP Kras Lgr5-CreERT2), crypts were harvested and expanded

from the colon of an adult female Lgr5-EGFP-IRES-creERT2 Trp53fl/fl Apcfl/fl KrasLSL-G12D/+ ROSA26LSL-eYFP/LSL-eYFP mouse according

to a published protocol.77 Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Cells were disso-

ciated into a single cell suspension and then cultured in 4-hydroxytamoxifen (Sigma). Cells werewashed and allowed to form colonies

in Matrigel. After 1 week in culture, roughly 50 fluorescent colonies were collected and separated from non-fluorescent colonies

under stereomicroscope with fluorescence attachment (Nikon). Colonies were dissociated and plated onto tissue culture treated

plates in RPMI-1640 with 10% FBS. Notably, transformed cells were then able to be passaged in the absence of supplemental

growth factors or Matrigel, both of which were required for the culture of crypts prior to treatment with 4-hydroxytamoxifen.

B16, LL/2, and A549 were cultured in DMEM (Gibco) supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and

100 mg/ml streptomycin (Gibco). Sparkl.4640, 4T1, and MDA-MB-231 were cultured in RPMI-1640 (Gibco) supplemented with

10% FBS, 100 U/ml penicillin, and 100 mg/ml streptomycin. Cells were tested for endotoxins using LAL Chromogenic Endotoxin

Quantitation Kit (Pierce) and for mycoplasma using PlasmoTest� (InvivoGen), according to manufacturer’s instructions.

Human blood
For studies involving human neutrophils, whole blood was obtained from de-identified healthy blood donors at Stanford Blood

Center. Informed consent was obtained from all donors. Human neutrophils were isolated and used in assays immediately and

were not maintained in culture.

METHOD DETAILS

Tumor implantation, treatment, and survival
Cell lines were harvested with trypsin-EDTA (Gibco), washed once, and injected in 50 ml phenol red-free RPMI-1640 (Gibco). B16

(2.5x105 cells), Sparkl.4640 (5x105 cells), and LL/2 (1x105 cells) were injected subcutaneously (s.c.) into the flank of WT or KO

mice on a syngeneic C57BL/6J background. 4T1 (1x105 cells) was injected s.c. into the flank of WT mice on a syngeneic BALB/cJ

background. A549 (5x106 cells) was injected s.c. into the flank of Rag2–/– Il2rg–/– mice on a C57BL6/J background. MDA-MB-231

(5x106 cells) was injected orthotopically into the mammary fat pad of Rag2–/– Il2rg–/– mice on a C57BL6/J background. B16,

Sparkl.4640, 4T1, and A549 tumors were allowed to grow for approximately 6 days prior to treatment, LL/2 was allowed to grow

for approximately 8 days prior to treatment, and MDA-MB-231 was allowed to grow for approximately 12 days prior to treatment,

at which point the tumors were approximately 10-30 mm2. MMTV-PyMT mice were monitored until palpable tumors developed in

the breast, at approximately 8 weeks of age, and treatment was initiated when tumors reached approximately 4-10mm2.

Except where indicated otherwise, tumors were treated by intratumoral injection of tumor-binding antibody, 100 mg of agonistic

anti-CD40 antibody (clone FGK4.5, Bio X Cell, Lebanon, NH), and 1 mg (ED50 0.5-3 pg/ml in L929 cytotoxicity assay) of recombinant

mouse TNF (BioLegend) in 50 ml total volume in phosphate buffered saline (PBS), which is referred to in the text as neutrophil-acti-

vating therapy. As tumor-binding antibody, B16 received 100 mg anti-gp75 (clone TA99, Bio X Cell), B16-EGFP received 100 mg

anti-GFP (clone F56-6A1.2.3, Bio X Cell), Sparkl.4640 and LL/2 received 10 mg anti-CD44 (DS-MB-00666, RayBiotech), 4T1 and

MMTV-PyMT received 100 mg anti-MHCClass I (clone 34-1-2S, Bio X Cell), and A549 andMDA-MB-231 received 100 mg anti-human

MHC Class I (clone W6/32, Bio X Cell). In all cases, tumor-binding antibodies were confirmed to bind the appropriate tumor cells by

flow cytometry. Mock-treated mice received an intratumoral injection of 50 ml PBS (treatment vehicle). Treatment was administered

twice, two days apart, designated as days 0 and 2 post-treatment. For MMTV-PyMT mice, treatment was repeated weekly for four

cycles, so that mice were treated on days 0, 2, 7, 9, 14, 16, 21, and 23. Although tumors develop in multiple breasts in the MMTV-

PyMT model, only one tumor was treated per mouse for the duration of the therapy, with the largest tumor at the time of treatment

initiation chosen for treatment. For TNF dose response experiments, mice received doses of 10 ng, 50 ng, or 1 mg of TNF (BioLegend).

Where indicated, tumors were injected with one or two of the three treatment components. In some experiments, tumors were in-

jected with 1 mg recombinant mouse GM-CSF (BioLegend), 5 mg recombinant mouse IFNg (BioLegend), 1 mg recombinant mouse

IL-1b (BioLegend), or 1 mg recombinant mouse IL-17A (BioLegend). Tumor areas were measured three times per week, and mice

were euthanized when treated tumors exceeded 100 mm2 or when tumors became ulcerated, with both indicated as a death event

on the Kaplan Meier plots. Mice were censored from survival studies when they had to be euthanized for reasons unrelated to tumor
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progression, such as dermatitis, and were tumor-free. For re-challenge studies, C57BL/6J WT or Rag2–/– mice that had cleared B16

tumors were re-challenged with 5x104 B16 cells in the opposite flank 50 days after initial treatment.

Blood chemistry
Blood was collected frommice by retro-orbital bleed and allowed to clot for 30 minutes on ice. It was then centrifuged at 2000 x g for

20 minutes at 4�C. Serum was collected from the top of the clot and centrifuged again at 2000 x g for 10 minutes at 4�C to remove

residual red blood cells. Chemistry analysis was performed on the Siemens Dimension EXL200/LOCI analyzer by the Stanford

University Animal Diagnostic Lab.

Mouse in vitro cytotoxicity studies
B16 tumors were treated by intratumoral injection of TNF + anti-CD40 + anti-gp75 and harvested 12 hours post-treatment. Tumors

were dissected away from any surrounding fat, minced, and digested in 5mg/ml collagenase IV (Worthington) plus 0.1mg/ml DNase I

(Sigma) with continuousmixing bymagnetic stir bars for 20 minutes at 37�C in RPMI-1640 (Gibco) with 2% FBS. Following digestion,

tissue was mashed through a 70 mm cell strainer (Falcon) and washed. For some studies, bone marrow was harvested by grinding

bones from tumor-naı̈ve untreated mice in a mortar and pestle and mashing through a 70 mm strainer (Falcon). Neutrophils were

isolated from tumor and bone marrow samples with the MojoSort Mouse Ly6G Selection Kit (BioLegend), according to the manufac-

turer’s instructions, and used in the cytotoxicity assay.

Cytotoxicity assays were conducted using the EuTDA assay from the DELFIA TRF cytotoxicity kit (PerkinElmer) according to the

manufacturer’s instructions. Briefly, B16 cells were labeled for 10 minutes with BATDA, and 5x103 labeled cells were added per well

to a 96 well V-bottom plate in RPMI-1640. Neutrophils were added at a ratio of 10:1 unless otherwise stated. All co-cultures were

conducted in the presence of TNF (10 ng/ml), anti-CD40 (1 mg/ml), anti-gp75 (1 mg/ml), and 10% active mouse C57BL/6 complement

serum (Innovative Research), except where indicated otherwise. Mouse C57BL/6 complement serum was heat-inactivated for

40 minutes at 57�C where inactivation is specified. In some experiments, mouse IgG2a isotype control (1 mg/ml, isotype control

for anti-gp75, clone C1.18.4, Bio X Cell), anti-mouse CD16/CD32 (10 mg/ml, clone 2.4G2, Bio X Cell), recombinant mouse C5a

(50 nM, R&D Systems), anti-C5a (25 mg/ml, clone 295108, R&D Systems), rat IgG2a isotype control (25 mg/ml, isotype control for

anti-C5a, clone 2A3, Bio X Cell), anti-C5AR1 (5 mg/ml, clone 20/70, BioLegend), rat IgG2b isotype control (5 mg/ml, isotype control

for anti-C5AR1, clone LTF-2, Bio X Cell), SC57461A (10 mM, Cayman Chemical), CP-105696 (1 mM, Sigma), topiroxostat (10 mM,

MedChem Express), or DMSO (vehicle for SC57461A, CP-105696, and topiroxostat) were added to the wells with the B16 and neu-

trophils. After 4 hours of co-culture at 37�C, supernatant was taken from the wells, Europium solution was added, and TDA released

from lysed B16 cells was detected by TRF on a Victor X4 fluorescence microplate reader (PerkinElmer). Percent maximal lysis was

determined by calculating the specific release of TDA using the formula: (experimental release – spontaneous release) / (maximum

release – spontaneous release), where spontaneous release was determined by wells containing no neutrophils and maximum

release was determined by wells with lysis buffer added.

For trogocytosis studies investigating transfer of tumor-binding antibody, anti-gp75 labeled with AF647 (clone TA99, Novus Bio-

logicals) was used in place of unlabeled anti-gp75. For studies investigating transfer of B16 cell membrane, DiD’ Solid (ThermoFisher

Scientific) was reconstituted in DMSO at 10 mg/ml and diluted to a working solution of 5 mg/ml in serum-free DMEM. B16 cells were

labeled in this solution for 20 minutes at 37�C at 1x106 cells/ml. Labeled B16 was washed 3 times in warmmedia before being added

to the co-culture wells with the neutrophils. Following co-culture, flow cytometry was used to identify DiD signal in neutrophils.

Depletion and inhibition studies
In neutrophil depletion experiments, 500 mg anti-Ly6G (clone 1A8, Bio X Cell) or isotype control (clone 2A3, Bio X Cell) was admin-

istered intraperitoneally (i.p.) on days –2, 0, and 2 relative to treatment, with administration 4 hours prior to treatment on days 0 and 2.

For MMTV-PyMT mice, this administration pattern was continued for four weeks for each of the treatment cycles. For neutrophil

depletion studies in untreated mice, anti-Ly6G or isotype control administration began 4 days after tumor inoculation (equivalent

to day –2 in treated mice), and administration continued every 2 days until the mice were euthanized. Graphing of survival for these

mice began at day 6 post tumor inoculation (equivalent to day 0 in treated mice).

For TNFR blocking experiments, 100 mg of anti-TNFR1 (clone 55R-170, BioLegend), anti-TNFR2 (clone TR75-54.7, BioLegend), or

isotype control (Armenian Hamster IgG, Bio XCell) was administered i.p. once per day on days –1 through 4 relative to treatment, with

administration 1 hour prior to treatment on days 0 and 2. Anti-factor B (clone 1379) was produced from a hybridoma (PTA-6230,

ATCC) with serum-free CD Hybridoma Medium (Gibco) in a 1L CELLine bioreactor flask, purified with HiTrap Protein G HP columns,

and buffer-exchanged to PBS in an Amicon Ultra 100 kDa centrifugal filter (Millipore). Anti-factor B or isotype control (clone MOPC-

21, Bio X Cell) was administered i.p. at 1 mg once per day on days –1 through 2 relative to treatment, with administration 1 hour prior

to treatment on days 0 and 2. Anti-properdin (clone 14E1) and anti-C5 (clone BB5.1) were produced as previously described74. For

properdin blocking experiments, 1 mg of anti-properdin or isotype control (clone MOPC-21, Bio X Cell) was administered i.p. on

days –1 and 1 relative to treatment. For C5 blocking experiments, 800 mg of anti-C5 or isotype control (clone MOPC-21, Bio X

Cell) was administered i.p. once daily on days –1 through 2 relative to treatment, with administration 1 hour prior to treatment on

days 0 and 2. For C5AR1 blocking experiments, anti-C5AR1 (clone 20/70, BioLegend) and isotype control (clone LTF-2, Bio X

Cell) were deglycosylated with the deGlycIT kit (Genovis) prior to administration in order to abrogate Fc receptor binding and prevent
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depletion of anti-C5AR1-bound neutrophils,78 and 100 mg of anti-C5AR1 or isotype control were administered daily on days –1

through 3 relative to treatment, with administration 1 hour prior to treatment on days 0 and 2.

Reduced L-glutathione (Sigma) was dissolved in PBS and administered i.p. at 500mg/kg at hours –1, 0, 2, 4, and 8 relative to treat-

ment on days 0 and 2, as well as twice per day on days 1 and 3. Catalase (C40, Sigma) was dissolved in PBS and administered i.p. at

500 mg/kg twice per day on days 0, 1, 2, and 3 relative to treatment, with administrations on days 0 and 2 coming immediately prior

and 4 hours after treatment. CVF (fromNaja naja kaouthia, Millipore), which depletes complement components C3 and C5 from blood

through fluid-phase activation,79 was diluted in PBS and administered at 50 mg i.p. daily on days –2 through 2 relative to treatment,

with administration 30 minutes prior to treatment on days 0 and 2. SC57461A (Cayman Chemical, Ann Arbor, MI) was dissolved in

DMSO at 150 mg/ml, diluted in PBS, and administered i.p. at 75 mg/kg twice per day on days –1 through 3 relative to treatment, with

administration 1 hour prior and 4 hours after treatment on days 0 and 2. CP-105696 (Sigma) was dissolved in DMSO at 400 mg/ml,

diluted in 25% 2-hydroxypropyl-b-cyclodextrin (Cayman Chemical), and administered i.p. at 100 mg/kg twice per day on days

0 through 3 relative to treatment, with administration 1 hour prior and 4 hours after treatment on days 0 and 2. Topiroxostat

(MedChemExpress) was dissolved in 0.2N NaOH in PBS, the pH was adjusted with HCl, and it was administered i.p. at

150 mg/kg on days 0 and 2, 3 hours prior to treatment.

Metastasis studies
For B16 experimental metastasis studies, mice were implanted with 2.5x105 B16 cells expressing tdTomato s.c. in the flank. Seven

days after implantation, 2x105 B16 cells expressing tdTomato were injected i.v. by the tail vein. Ten hours after tail vein injection, the

s.c. tumors were treated with PBS or TNF + anti-CD40 + anti-gp75, and the primary tumors were treated again two days later

according to the standard treatment protocol. Nine days after tail vein injection, the mice were euthanized, the lungs harvested,

and fluorescence images were acquired under a stereomicroscope with fluorescence attachment (Nikon). Discrete fluorescent me-

tastases visible on the exterior of the lungs were counted to obtain metastasis counts. The average nodule area for metastases was

determined using ImageJ by thresholding the image to remove background, using the analyze particles function to obtain the total

area of the metastases, and dividing this area by the number of metastases.

For 4T1 metastasis studies, 1x105 4T1 tumor cells were implanted orthotopically in the mammary fat pad. One week post-implan-

tation, when the primary tumor had reached a size of 16-30mm2, the primary tumor was treated by intratumoral injection of neutro-

phil-activating therapy or PBSmock treatment, with two injections two days apart, according to the standard protocol. Themicewere

euthanized 30 days post-implantation and pulmonary metastases were enumerated as previously described80 by intra-tracheal in-

jection of India ink (15% India Ink, 85% PBS, 0.1% NaOH). India ink-injected lungs were washed in 3mL Fekete’s solution (50%

ethanol, 6% formaldehyde, and 3% glacial acetic acid) and then placed 5 mL fresh Fekete’s solution overnight. White tumor nodules

against a black lung background were counted manually.

Knockout of TNFR1 in B16 using CRISPR-Cas9
pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang (Addgene plasmid # 48138; http://n2t.net/addgene:48138; RRID:

Addgene_48138).76 Two sgRNA target sequences for mouse Tnfrsf1a were chosen from the Brie library81: AGACCTAG

CAAGATAACCAG andGATGGGGATACATCCATCAG, referred to in the text as Tnfrsf1a sgRNA1 and Tnfrsf1a sgRNA2, respectively.

An sgRNA targeting the irrelevant E. coli b-galactosidase gene (LacZ) was also included as a control. Oligos for these sgRNA target

sequences were synthesized by the Stanford Protein and Nucleic Acid facility, with end overhangs to enable cloning into the BbsI site

of the PX458 backbone. Oligos were phosphorylated with T4 PNK (NEB) and annealed in a thermocycler at 37�C for 30 minutes,

followed by 95�C for 5 minutes, and ramping down to 25�C at 5�C/minute. PX458 was digested with BbsI (NEB) and gel purified

using the QIAquick Gel Extraction Kit (Qiagen). Phosphorylated and annealed oligos were ligated into BbsI-cut PX458 with T4

DNA ligase (NEB) and transformed into Stellar Electrocompetent Cells (Clontech) by electroporation with the GenePulser Xcell

(BioRad). Plasmids were prepared with the Plasmid Plus Maxi Kit (Qiagen) and transfected into B16 cells using Lipofectamine

2000 (Thermo Fisher Scientific). Successfully transfected cells positive for expression of GFP were sorted on the FACSAria II

(BD), followed by three successive rounds of sorting for cells negative for both GFP and TNFR1 staining using APC anti-TNFR1 (clone

55R-286, BioLegend), to achieve a population of cells lacking expression of TNFR1with the transient expression of GFP and CRISPR

machinery removed.

B16-EGFP
To generate B16 cells expressing EGFP on their surface, DNA encoding a fusion of mouse Igk signal peptide, EGFP, and the trans-

membrane domain of mouse PDGFR was synthesized using GeneArt Gene Synthesis (Invitrogen). The synthesized gene was

digested with BamHI and EcoRI (NEB) and gel purified using the QIAquick Gel Extraction Kit (Qiagen). This was ligated into

pLVX-EF1a-IRES-Puro (Clontech) with T4 DNA ligase (NEB) and transformed into Stellar Electrocompetent Cells (Clontech) by

electroporation with the GenePulser Xcell (BioRad). Plasmids were prepared with the Plasmid Plus Maxi Kit (Qiagen) and transfected

into 293T cells together with the psPax2 and pCMV-VSV-G plasmids using Lipofectamine 2000 (Thermo Fisher Scientific). Virus was

collected and used to transduce B16 cells, and successful transductants were selected using 1 mg/ml puromycin (ThermoFisher

Scientific).
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Flow cytometry
Tumors were digestedwith collagenase IV andDNase I as described above. Following digestion, tissue wasmashed through a 70 mm

cell strainer (Falcon), washed, red blood cells were lysed with ACK buffer for 1 minute, and cells were washed again prior to antibody

staining. Blood was harvested into PBS plus 20 mM EDTA by cardiac puncture or retro-orbital bleed, lysed in ACK buffer for 5 mi-

nutes, and washed prior to antibody staining. Bone marrow was harvested by grinding the femur and tibia in a mortar and pestle and

mashing through a 70 mmstrainer (Falcon), or by flushing femurs with a syringe and needle, then lysed in ACK buffer for 5minutes and

washed prior to antibody staining. Spleens were harvested bymashing through a 70 mmcell strainer (Falcon), then lysed in ACK buffer

for 5 minutes and washed prior to antibody staining.

Live cells were stained with antibodies on ice for 20 minutes in FACS buffer (HBSS 1% BSA 5mM EDTA) with Brilliant Stain Buffer

Plus (BD). Following staining, cells were washed twice in FACS buffer and resuspended in 1 mg/ml DAPI plus AccuCount Fluorescent

Particles (Spherotech) for absolute count determination. In some experiments, live cells were stained with Live/Dead Fixable Blue

Stain (Invitrogen) in HBSS on ice for 20minutes prior to antibody staining, andDAPI was not used. Cells for theHSC/progenitor exper-

iment were viability stained with 800CWNHS Ester (Li-Cor #929-70020) at a 1:4000 dilution of a 1mg/ml DMSO stock, for 20minutes

in PBSon ice prior to antibody staining. For assessment of neutrophil depletion efficiency and experiments analyzing Foxp3 andKi67,

cells were stained with Live/Dead Fixable Blue Stain (Invitrogen) in HBSS on ice for 20 minutes, cells were fixed and permeabilized

prior to antibody staining using the Foxp3/Transcription Factor Staining Kit (eBioscience) or the True-Nuclear Transcription Factor

Set (BioLegend) according to the manufacturer’s instructions, and DAPI was not used. This staining following fixation/permeabiliza-

tion allows identification of neutrophils with depleting antibody-bound extracellular Ly6G by staining intracellular Ly6G. Samples

were acquired on an LSRFortessa (BD), except for the HSC/progenitor data, which was acquired on a Cytek Aurora using

SpectroFlo V2.2.0.3. The following antibodies were used: BUV395 anti-CD45 (clone 30-F11, BD), BV421 anti-ICAM-1 (clone YN1/

1.7.4, BioLegend), BV480 anti-MHC II (clone M5/114.15.2, BD), BV650 anti-CD11b (clone M1/70, BioLegend), PE-Cy7 or BUV737

anti-Ly6G (clone 1A8, BD/BioLegend), PE or AF647 anti-C3 (clone 11H9, Novus Biologicals), APC-R700 anti-CD11c (clone N418,

BD), APC-Cy7 or BV785 anti-Ly6C (clone HK1.4, BioLegend), CD177 AF647 (clone Y127, BD Biosciences), SIRPa FITC (clone

P84, BioLegend), Siglec F BV480 (clone E50-2440, BD Biosciences), CD101 PE-Cy7 (clone Moushi101, ThermoFisher Scientific),

CD14 APC-Cy7 (clone Sa14-2, BioLegend), PD-L1 BV421 or BV711 or PE-Cy7 (clone 10F.9G2, BioLegend), XCR1 APC

(clone ZET, BioLegend), F4/80 APC-Cy7 (clone BM8, BioLegend), CD206 FITC (clone C068C2, BioLegend), CD80 PerCP-eF710

(clone 16-10A1, ThermoFisher Scientific), CD86 BUV737 (clone GL1), B220 BV711 (clone RA3-6B2, BioLegend), TCRb BV421 (clone

H57-597, BioLegend), NK1.1 PE-Cy7 (clone PK136, BioLegend), CD8a BV510 (clone 53-6.7, BioLegend), CD4 BV711 (clone RM4-5,

BioLegend), Foxp3 AF488 (clone MF23, BD Biosciences), CD25 BV650 (clone PC61, BioLegend), CD62L PerCP-Cy5.5 (clone

MEL-14, BioLegend), CD44 APC-eF780 (clone IM7, ThermoFisher Scientific), KLRG1 PE (clone 2F1/KLRG1, BioLegend), PD-1

BV785 (clone 29F.1A12, BioLegend), CD69 APC (clone H1.2F3, BD Biosciences), Ki67 AF700 (clone SolA15, ThermoFisher Scien-

tific), CD34 eF450 or AF700 (clone RAM34, ThermoFisher Scientific), IL-7Ra AF700 (clone A7R34, ThermoFisher Scientific), Sca-1

BV711 (clone D7, BioLegend), Sca-1 PE-Cy7 (clone E13-161/7, BioLegend), cKit FITC (clone 2B8, ThermoFisher Scientific),

CD16/32 PE (clone S17011E, BioLegend), CD3ε PE-Cy7 (clone 17A2, ThermoFisher Scientific), CD4 PE-Cy7 (clone GK1.5,

ThermoFisher Scientific), CD8a PE-Cy7 (clone 53-6.7, ThermoFisher Scientific), CD11b PE-Cy7 (clone M1/70, ThermoFisher Scien-

tific), B220 PE-Cy7 (clone RA3-6B2, ThermoFisher Scientific), NK1.1 PE-Cy7 (clone PK136, ThermoFisher Scientific), Flt3 APC (clone

A2F10, BioLegend), CD106 Pacific Blue (clone 429 (MVCAM.A), BioLegend), CD115 BV605 (clone AFS98, BioLegend), Ly6G PE-Cy5

(clone 1A8, ThermoFisher Scientific), CD81 PerCP-Cy5.5 (clone Eat-2, BioLegend), H-2Kb PE (clone AF6-88.5, BD Biosciences),

H-2Db APC (clone KH95, BioLegend), fluorescein anti-gp75 (clone TA99, Bio X Cell, labeled using NHS-Fluorescein (Thermo

Scientific)), MPO FITC (clone 2D4, Abcam), citrullinated Histone H3 (Abcam ab5103), donkey anti-rabbit IgG PE (BioLegend

Poly4064), and unconjugated anti-CD16/CD32 (clone 2.4G2, Bio X Cell) to block Fc receptors. For dihydrorhodamine-123

(DHR-123) staining of tumor samples, 5mM DHR-123 in DMSO (Invitrogen) was added to the collagenase mixture at a dilution of

1:4000 and allowed to stain for the duration of the 20-minute collagenase digestion. Flow cytometry data was analyzed using

FlowJo software (BD). Staining levels were quantified using the median fluorescence intensity (MFI).

May-Gr€unwald-Giemsa staining
Tumors were harvested, processed, and stained for flow cytometry as described above, 24 hours after treatment or mock treatment.

Cells were stained with FITC anti-CD45 (clone 30-F11, BioLegend), APC-Cy7 anti-CD11b (clone M1/70, BioLegend), and PE

anti-Ly6G (clone 1A8, BioLegend), and CD45+CD11b+Ly6G+ neutrophils were sorted on a FACSAria II (BD). Sorted neutrophils

were resuspended at 5x105 cells/ml in FACS buffer, and 200 ml was spun onto a slide using the StatSpin CytoFuge 2 at 850 rpm

for 10 minutes. Slides were dried and then stained for 4 minutes in May-Gr€unwald stain solution (Electron Microscopy), transferred

directly into 4%Giemsa stain solution (Electron Microscopy) for 4 minutes, and washed twice with water for 30 seconds each. Slides

were dried and coverslips were mounted using Cytoseal 60 (Richard Allen Scientific). Stained cells were imaged on a Keyence

BZ-X810 microscope (Keyence) with the 20X objective and a resolution of 1920 x 1440 pixels.

Immunofluorescence
Tumors were dissected away from surrounding fat, fixed in 2% paraformaldehyde for 2 hours at 4�C, equilibrated in a 30% sucrose

solution at 4�C, and embedded and frozen in O.C.T. Compound (Tissue-Tek). Slides were cut to 6 mm and blocked with 1%BSA and

10% serummatched to the secondary antibody species. The following antibodies were used for immunofluorescence: PE anti-Ly6G
e8 Cancer Cell 41, 356–372.e1–e10, February 13, 2023
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(clone 1A8, BioLegend), DyLight 650 anti-gp75 (clone TA99, Bio X Cell, labeled using DyLight 650 NHS Ester (Thermo Scientific)),

fluorescein anti-gp75 (clone TA99, Bio X Cell, labeled using NHS-Fluorescein (Thermo Scientific)), FITC anti-DNA/RNA damage

(clone 15A3, recognizing 8-hydroxy-2’-deoxyguanosine/8-oxo-7,8-dihydroguanine/8-oxo-7,8-dihydroguanosine, Abcam), and

AF647 anti-C3 (clone 11H9, Novus Biologicals). DAPI (Invitrogen) was stained at 1 mg/ml. FITC/fluorescein signal was amplified using

AF488 anti-FITC (ThermoFisher Scientific), and PE was amplified using biotin anti-PE (clone PE001, BioLegend) followed by DyLight

594 streptavidin (BioLegend) or DyLight 649 streptavidin (BioLegend). Prior to use of biotinylated antibodies, endogenous biotin was

blocked using the Avidin/Biotin Blocking Kit (Vector Laboratories). Prior to DNA/RNA damage staining, sections were permeabilized

with 0.1% Triton X-100 in 0.1% sodium citrate. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) staining was

performed using the In Situ Cell Death Detection Kit, TMR Red (Roche) according to the manufacturer’s instructions. Briefly, tissue

sections were fixedwith 4%paraformaldehyde for 20minutes on ice prior to treatment with 0.1%Triton X-100 in 0.1% sodium citrate

for permeabilization. Sections were washed in PBS before incubation for 60 minutes at 37�C with antibodies and TdT enzyme, fol-

lowed by washing. Images were acquired by tile scanning using a Zeiss LSM 700 confocal laser scanning microscope (Carl Zeiss

Microscopy) or a Keyence BZ-X810microscope (Keyence) using the 20X objective and a resolution of 960 x 720 pixels per tile. Tumor

immunostainings were repeated independently at least 2 times in at least biological triplicate and whole tissue section images were

acquired. Stitching of images acquired with the LSM 700 was performed using ZEN software, and stitching of images acquired with

the BZ-X810 was performed using BZ-X800 Analyzer software. Multiple tumors from the same experiment were embedded together

in the same block, stained together in the same section, and acquired together in a tile scan across the entire section. Individual tu-

mors were then cropped from the full tile scan image for display in figures. Images were overlaid and color channel levels were

adjusted in Photoshop (Adobe), with individual color channels receiving individual level adjustments based on the staining intensity.

All parameters that were quantified were acquired with identical microscope settings and adjusted identically in Photoshop, and all

adjustments were applied equally across the entire tumor. Quantification was performed in ImageJ, using the wand tool on the over-

laid multichannel image to draw a border around the tumor and then measuring the percent area within that border with signal for the

channel of the marker quantified.

LTB4 ELISA
Tumors were dissected away from surrounding fat 24 hours post-treatment and lysed in PBS using 3 mm zirconium beads (Bench-

mark Scientific) in the BeadBugMicrotube Homogenizer (Benchmark Scientific) for 2 cycles of 45 seconds at 3000 rpm. Crude lysate

was centrifuged for 15 minutes at 16000 x g at 4�C to obtain clarified lysate. Clarified lysate was deproteinized by ethanol precipi-

tation by adding 4 volumes of 100% ethanol, incubating on ice for 5 minutes, and centrifuging for 10 minutes at 3000 x g at 4�C.
Deproteinized supernatant was transferred to a new tube, ethanol was removed by evaporation at room temperature, and samples

were brought to the appropriate volume in ELISA assay buffer. LTB4 content was determined with the Leukotriene B4 ELISA kit

(Cayman Chemical 520111) according to the manufacturer’s instructions and read with a Victor X4 fluorescence microplate reader

(PerkinElmer).

Ex vivo neutrophil LTB4 assay
B16 tumors were harvested from mice 12 hours after treatment with TNF + anti-CD40 + anti-gp75 and digested with collagenase IV

andDNase I as described above. Tumor samples were then split into two halves, with one half undergoing selection with theMojoSort

Mouse Ly6GSelection Kit (BioLegend) to generate Ly6G+ and Ly6G-depleted tumor samples and the other half undergoing depletion

with an isotype control antibody and streptavidin nanobeads (BioLegend) to generate the ‘‘all cells’’ condition. These selected sam-

ples were then plated in 200ml of Opti-MEM (Gibco) and incubated for 30 minutes at 37�C. Following the incubation, the supernatant

was collected, centrifuged to remove cells and debris, and analyzed for LTB4 using the Leukotriene B4 ELISA kit (Cayman Chemical

520111) as described above.

Mouse in vitro neutrophil stimulations
Bone marrow was harvested by grinding bones in a mortar and pestle and mashing through a 70 mm strainer (Falcon). Neutrophils

were isolated by negative selection with the MojoSort Mouse Neutrophil Isolation Kit (BioLegend). Following isolation, neutrophils

were plated in Opti-MEM (Gibco) at 1x105 cells in 100 ml and stimulated with 10 ng/ml TNF, 1 mg/ml anti-CD40, 1 mg/ml anti-

gp75, and/or 50 nM recombinant mouse C5a (R&DSystems) for 30minutes at 37�C. After 30minutes, the supernatant was collected,

centrifuged to remove cells and debris, and analyzed for LTB4 using the Leukotriene B4 ELISA kit (Cayman Chemical 520111) as

described above. Additionally, stimulated neutrophils were stained for activation markers and analyzed by flow cytometry as

described above.

Determination of oxidized glutathione content
Tumors were dissected away from surrounding fat 24 hours post-treatment and lysed in mammalian lysis buffer (Abcam ab179835)

using 3 mm zirconium beads (Benchmark Scientific) in the BeadBug Microtube Homogenizer (Benchmark Scientific) for 2 cycles of

45 seconds at 3000 rpm. Crude lysate was centrifuged for 15min at 16000 x g at 4�C, and clarified lysate was deproteinized using the

Deproteinizing Sample Preparation Kit – TCA (Abcam ab204708) according to the manufacturer’s instructions. Glutathione was de-

tected using theGSH/GSSGRatio Detection Assay Kit II (Abcam ab205811) according to themanufacturer’s instructions, reading the
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resulting signal with a Victor X4 fluorescence microplate reader. The percentage of oxidized glutathione was calculated from the

reduced glutathione and total glutathione values determined by the kit.

XO assay
Tumors were dissected away from surrounding fat 24 hours post-treatment and lysed in XO assay buffer (Abcam) using 3 mm zir-

conium beads (Benchmark Scientific) in the BeadBug Microtube Homogenizer (Benchmark Scientific) for 2 cycles of 45 seconds

at 3000 rpm. Crude lysate was centrifuged for 10 minutes at 16000 x g at 4�C to obtain clarified lysate. XO activity of the lysate

was determined using the Xanthine Oxidase Activity Assay kit (Abcam), setting up the fluorometric assay and performing calculations

according to the manufacturer’s instructions, and reading fluorescence with a Victor X4 fluorescence microplate reader.

ROS assays
For the luminol assay, B16-bearing mice were anesthetized 4 hours post-treatment, and 50 mL luminol sodium salt (Sigma-Aldrich) at

20 mg/mL in PBS was administered intratumorally. Mice were immediately imaged using the IVIS Lumina system (Xenogen). Signal

intensity was quantified as photons/second (p/s) over a one-minute exposure in equally sized regions of interest placed over the tu-

mor, using Living Image software (Caliper Life Sciences).

For the OxyBurst assay, neutrophils were isolated from naı̈ve bonemarrow or treated tumors, and 1x105 neutrophils were plated in

a 96-well plate together with 5x103 B16 tumor cells. The cells were stimulated as in the cytotoxicity studies and cultured for 4 hours at

37�C in the presence of 10 mg/ml OxyBurst Green H2HFF BSA. After co-culture, the plate was read on a Victor X4 fluorescencemicro-

plate reader (PerkinElmer) with 485 nm excitation and 535 nm emission.

Human neutrophil studies
Human neutrophils were isolated from whole blood obtained from de-identified blood donors using the EasySep Direct Human

Neutrophil Isolation Kit (StemCell Technologies) according to the manufacturer’s instructions. For activation marker studies, neutro-

phils were plated at 1x106 cells/ml in Opti-MEM (Gibco) and stimulated for 30 minutes at 37�C with human TNF (50 ng/ml,

BioLegend), anti-human CD40 (1 mg/ml, clone G28.5, Bio X Cell), anti-human EGFR (1 mg/ml, Cetuximab biosimilar, Bio X Cell), or

human C5a (50 nM, R&D Systems), as indicated in the figures. In some experiments, 5mMDHR-123 in DMSO (Invitrogen) was added

to the stimulation well at a dilution of 1:4000. Following stimulation, the cells were stained with antibodies on ice for 20 minutes in

FACS buffer (HBSS 1% BSA 5mM EDTA) with Brilliant Stain Buffer Plus (BD). Following staining, cells were washed twice in

FACS buffer and resuspended in 1 mg/ml DAPI. Samples were acquired on an LSRFortessa (BD). The following antibodies were

used: APC-Fire 750 anti-CD11b (clone M1/70, BioLegend), ICAM-1 FITC (clone HA58, BioLegend), CD16 BV711 (BioLegend, clone

3G8), CD32 BV786 (clone FLI8.26, BD Biosciences), CD66b AF647 (clone G10F5, BioLegend), CD63 BV510 (clone H5C6, BD Bio-

sciences), and anti-C5AR1 PE (clone S5/1, BioLegend).

Cytotoxicity assays were performed with the EuTDA assay from the DELFIA TRF cytotoxicity kit (PerkinElmer) according to the

manufacturer’s instructions. A549 cells were labeled for 30 minutes with BATDA, and 1x104 labeled cells were added per well to

a 96 well V-bottom plate in RPMI-1640. Neutrophils were added at a ratio of 50:1 unless specified otherwise. All co-cultures were

conducted in the presence of TNF (10 ng/ml), anti-CD40 (1 mg/ml), anti-gp75 (1 mg/ml), and 10% pooled human complement serum

(Innovative Research) for 1 hour, except where indicated otherwise.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
Statistical tests were performed in Prism (GraphPad Software, Inc.). Statistical tests used are listed in the figure legends. In cases

where conditions were compared across multiple time points or cell types, statistical significance was determined by two-way

ANOVA with Tukey’s multiple comparisons test, comparing only the conditions within each time point or cell type. For in vitro cyto-

toxicity studies with multiple conditions and groups, statistical significance was determined by two-way ANOVA with Tukey’s mul-

tiple comparisons test, comparing all conditions and groups with all other conditions and groups. Plots display individual biological

replicates obtained from distinct mice, with a line at the mean. For all figures, * denotes p < 0.05, ** denotes p < 0.01, *** denotes

p < 0.001, **** denotes p < 0.0001, and n.s. indicates not significant, with the exception of Kaplan Meier plots with multiple compar-

isons, in which case the asterisks are assigned based on Bonferroni-corrected p values. For all experiments, n represents the number

of mice or the number of samples. Exact n values and the number of independent experiments are provided in the figure legends.
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Figure S1: Neutrophil-activating therapy induces neutrophil expansion and recruitment 
to tumors. Related to Figure 1.  

(A) Flow cytometry gating strategy for neutrophils. (B) Neutrophil infiltration of B16 tumors 24 

hours after treatment with the indicated cytokines (n=3). (C-D) Expression of CD11b (C) and 

ICAM-1 (D) on tumor-infiltrating neutrophils 24 hours after administration of the indicated 

cytokines (n=3). (E) Neutrophil infiltration of B16 tumors 24 hours after treatment with the 

indicated dose of TNF (n=4). (F-G) Expression of CD11b (F) and ICAM-1 (G) on tumor-

infiltrating neutrophils 24 hours after administration of the indicated dose of TNF (n=4). (H) 

Survival of B16-bearing mice following treatment with 1 µg TNF (mock n=7, TNF n=10). (I-J) 

Survival of B16-bearing mice treated with the indicated factors (I: mock n=5, others n=6; J: 

mock n=6, others n=7). (K) Percent change in mouse body weight following treatment of B16 

tumors (n=5, mean +/- SEM shown). (L) Mouse blood chemistry values obtained on the 

indicated days after treatment of B16 tumors with neutrophil-activating therapy (d60 n=3, others 

n=4). (M-N) Flow cytometry gating strategies to identify hematopoietic stem cells, progenitors, 

and neutrophil precursors. (O-P) Frequencies of hematopoietic stem cells, progenitors, and 

precursor populations in the bone marrow (O) and spleen (P) 24 hours after treatment of B16 

with neutrophil-activating therapy (anti-gp75 n=4, others n=5). Statistics: One-way ANOVA with 

Tukey’s multiple comparisons test (B-G, L, O-P), Log-rank test (H), Log-rank test with 

Bonferroni correction (I-J), Two-way ANOVA with Sidak’s multiple comparisons test (K). For all 

dot plots, the line indicates the mean. Data are representative of 2 (B-G, I-J, O-P) or 1 (K-L) 

independent experiments or pooled from 4 experiments (H).   



 
Figure S2: Therapy induces neutrophil activation. Related to Figure 1.  

(A-B) Tumor-infiltrating neutrophil frequency of CD45+ cells (A) and numbers/mg of tumor (B) 24 

hours after treatment of B16 tumors with neutrophil-activating therapy in wild-type (WT) or TNF 

receptor knockout (TNFR KO) mice (n=4). (C) CD11b expression on tumor-infiltrating 
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neutrophils 4 hours after treatment of B16 tumors with neutrophil-activating therapy in WT or 

TNFR KO mice (n=4). (D-E) Representative immunofluorescence (D) and quantification (E) of 

TUNEL staining in B16 tumors in WT or TNFR KO mice 24 hours after treatment with 

neutrophil-activating therapy. Scale bars = 500 µm. (n=3) (F) Survival of B16-bearing WT or 

TNFR KO mice treated with neutrophil-activating therapy (n=9). (G) Survival of B16-bearing 

mice treated with neutrophil-activating therapy following administration of TNFR blocking 

antibodies (TNFR2 n=5, others n=10). (H) TNFR1 staining of B16 cells following knockout of 

TNFR1 with CRISPR-Cas9 sgRNA targeting Tnfrsf1a or the irrelevant LacZ. (I) Survival of mice 

bearing TNFR1-knockout B16 following treatment with neutrophil-activating therapy (n=10). (J) 

Representative histograms comparing Siglec F expression in mock or treated tumor-infiltrating 

neutrophils to Siglec F expression in a Ly6G– Siglec F+ cell population in the tumor of mock-

treated mice, 4 hours after treatment. (K) Representative histograms comparing the expression 

level of CD101 in mock or treated tumor-infiltrating neutrophils to that of Ly6G– cells in the tumor 

of mock-treated mice, 4 hours after treatment. (L) Surface marker expression on neutrophils in 

the blood 4 hours after treatment of B16 tumors with the indicated components (n=4). (M) 

Surface marker expression on neutrophils in the blood at the indicated times post-treatment with 

the full neutrophil-activating therapy (d7 n=3, others n=4). (N-O) Neutrophil frequency in the 

tumor (N) and blood (O) 24 hours after treatment of Sparkl.4640 with neutrophil-activating 

therapy (n=4). (P) Neutrophil frequency in 4T1 tumors 24 hours after treatment with the 

indicated components (n=4). (Q) Surface marker expression on neutrophils in 4T1 tumors 4 

hours after treatment with the indicated components (n=4). (R) Representative flow cytometry 

staining of CD11b+Ly6G+ cells, gated on single/live/CD45+ cells (left panels), and May-

Grünwald-Giemsa staining of sorted CD45+CD11b+Ly6G+ cells (right panels), in B16 tumors 24 

hours after treatment with neutrophil-activating therapy. Image scale bars = 30 µm. Inset scale 

bars = 10 µm. (S) Tumor-infiltrating neutrophil MFI of the ROS-sensing dye dihydrorhodamine-

123 (DHR-123) 4 hours after treatment with neutrophil-activating therapy (n=5). (T) 

Fluorescence of OxyBURST Green H2HFF BSA following in vitro stimulation of neutrophils 

isolated from treated tumors or naïve bone marrow with neutrophil-activating therapy (n=4). (U) 

Bioluminescence in the tumor emitted from the ROS-sensing molecule luminol during in vivo 

imaging 4 hours after treatment of B16 with neutrophil-activating therapy (n=5). (V-W) 

Percentage of neutrophils staining triple positive for DAPI, citrullinated histone H3 (H3-Cit), and 

myeloperoxidase (MPO) in the tumor (V) and blood (W) of mice treated with neutrophil-

activating therapy (n=5). Statistics: One-way ANOVA with Tukey’s multiple comparisons test (A-

E, L-Q, U), Log-rank test (F), Log-rank test with Bonferroni correction (G, I), Unpaired two-tailed 



t test (S, V-W), Two-way ANOVA with Tukey’s multiple comparisons test (T). For all dot plots, 

the line indicates the mean. Data are representative of 3 (F, S), 2 (A-E, H, J-P, R, T, U-W) or 1 

(Q) independent experiments or pooled from 2 experiments (G, I).  



 

 
Figure S3: Neutrophil depletion prevents tumor clearance. Related to Figure 2.  
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(A) Tumor growth in WT and Fcer1g–/– B16-bearing mice after treatment with neutrophil-

activating therapy (n=10). (B-D) Neutrophil frequency (B), numbers (C), and CD11b expression 

(D) in WT versus Fcer1g–/– mice, 24 hours after treatment (n=4). (E) Expression of gp75, PD-L1, 

and MHCI molecules on B16 tumor cells from day 0 untreated tumors or tumors that recurred 

following neutrophil-activating therapy. (F) Tumor growth and survival of mice implanted with 

B16 tumors, in which either 50% or 100% of the B16 cells expressed EGFP on the surface, 

following treatment with TNF + anti-CD40 + anti-EGFP (n=10). (G) Neutrophil frequency in 

untreated B16 tumors in mice administered anti-Ly6G or isotype control (n=4). (H) Neutrophil 

frequency in B16 tumors 4 hours after treatment with neutrophil-activating therapy in mice 

administered anti-Ly6G or isotype control (n=4). (I-L) Neutrophil frequencies (I, K) and numbers 

(J, L) in the tumor (I-J) and blood (K-L) of B16-bearing mice at multiple time points after the 

Ly6G depletion plus neutrophil-activating therapy protocol (n=4). (M-R) Neutrophil frequency in 

the tumor (M, O, Q) and blood (N, P, R) 24 hours after neutrophil-activating treatment of Ly6G-

depleted mice bearing LL/2 (M-N), 4T1 (O-P), and Sparkl.4640 (Q-R) tumors. (n=5) (S) B16 

tumor growth and survival of mice receiving anti-Ly6G or isotype control in the absence of 

neutrophil-activating therapy (n=10). (T-W) Tumor growth in mice bearing B16 (T) (n=10), LL/2 

(U) (mock n=8, others n=10), 4T1 (V) (n=10), or Sparkl.4640 (W) (mock n=8, isotype n=10, anti-

Ly6G n=9) tumors that received anti-Ly6G or isotype control prior to neutrophil-activating 

therapy or mock treatment. (X) Growth of the treated tumor in MMTV-PyMT mice administered 

anti-Ly6G or isotype control prior to neutrophil-activating therapy. Isotype control mice were 

euthanized at day 50 due to tumor burden in distant untreated breasts. (mock n=8, others n=6) 

Statistics: One-way ANOVA with Tukey’s multiple comparisons test (B-D, H), Log-rank test (F, 

S), Unpaired two-tailed t test (G, M-R), Two-way ANOVA with Tukey’s multiple comparisons test 

(I-L). For all dot plots, the line indicates the mean. Data are representative of 3 (T), 2 (A-D), or 1 

(E-S) independent experiments or pooled from 3 (U-W) or 6 (X) experiments.   
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Figure S4: Impact of neutrophil-activating therapy on the numbers and frequencies of 
other immune cells. Related to Figure 3.  

(A-B) Flow cytometry gating strategy for identifying myeloid and lymphoid subsets. CD4+Foxp3– 

T cells were gated for memory and effector phenotype in the same manner as the CD8+ T cells 

shown. (C) Numbers of other immune cells in B16 tumors 24 hours after treatment with the 

indicated components (n=4). (D-E) Frequencies (D) and numbers (E) of immune cells in B16 

tumors 24 hours after treatment of WT or TNFR KO mice with the full neutrophil-activating 

therapy (n=4). (F-G) Frequencies (F) and numbers (G) of immune cells in B16 tumors 24 hours 

after treatment of WT or Fcer1g–/– mice with the full neutrophil-activating therapy (n=4). (H-I) 
Frequencies (H) and numbers (I) of immune cells in the blood of B16-bearing mice 24 hours 

after treatment with the indicated components (n=4). (J) Frequencies of T cell subsets as a 

percentage of total T cells in the blood 24 hours after treatment of B16 tumors with the indicated 

components (n=4). (K-L) Frequencies (K) and numbers (L) of immune cells in Sparkl.4640 

tumors 24 hours after treatment with the indicated components (n=4). (M) Percent of CD11b+ 

cDC2s out of total DCs in Sparkl.4640 tumors 24 hours after treatment (n=4). (N-O) 

Frequencies (N) and numbers (O) of immune cells in 4T1 tumors 24 hours after treatment with 

the indicated components (n=4). (P) Percent of CD11b+ cDC2s out of total DCs in 4T1 tumors 

24 hours after treatment (n=4). (Q) Percent of T cell subsets out of total T cells in 4T1 tumors 24 

hours after treatment (n=4). Statistics: Two-way ANOVA with Tukey’s multiple comparisons test 

(C-L, N-O, Q), One-way ANOVA with Tukey’s multiple comparisons test (M, P). For all dot plots, 

the line indicates the mean. Data are representative of 2 (C-J) or 1 (K-Q) independent 

experiments.   



 

 
Figure S5: Activation and priming of immune cells induced by neutrophil-activating 
therapy. Related to Figure 3.  
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(A) Ratio of CD206hi to MHCIIhi macrophages in B16 tumors 24 hours after treatment with the 

indicated components (n=4). (B) Expression of activation markers on APC populations in 

Sparkl.4640 tumors 24 hours after treatment with the indicated components (n=4). (C) Ratio of 

CD206hi to MHCIIhi macrophages in Sparkl.4640 tumors 24 hours after treatment with the 

indicated components (n=4). (D) Expression of activation markers on APC populations in 4T1 

tumors 24 hours after treatment with the indicated components (n=4). (E) Ratio of CD206hi to 

MHCIIhi macrophages in 4T1 tumors 24 hours after treatment with the indicated components 

(n=4). (F-G) Frequencies (F) and numbers (G) of total T cells in the blood 7 days after treatment 

of 4T1 (n=4). (H) Percent of T cell subsets out of total T cells in the blood 7 days after treatment 

of 4T1 (n=4). (I) Expression of markers on T cell subsets in the blood 7 days after treatment of 

4T1 (n=4). (J-K) Frequencies (J) and numbers (K) of total T cells in the tumor-draining lymph 

node (dLN) 7 days after treatment of 4T1 (n=4). (L) Percent of T cell subsets out of total T cells 

in the dLN 7 days after treatment of 4T1 (n=4). (M) Memory and effector phenotypes of T cell 

subsets in the dLN 7 days after treatment of 4T1 (n=4). (N) Expression of markers on T cell 

subsets in the dLN 7 days after treatment of 4T1 (n=4). (O-P) Frequencies (O) and numbers (P) 

of total T cells in the tumor 7 days after treatment of 4T1 (n=4). (Q) Percent of T cell subsets out 

of total T cells in the tumor 7 days after treatment of 4T1 (n=4). (R) Growth of B16 in WT or 

Rag2–/– mice following treatment with neutrophil-activating therapy (n=15). (S) Growth of B16 in 

untreated WT or Rag2–/– mice (WT n=5, Rag2–/– n=10). (T) Tumor growth and survival of B16-

bearing Rag2–/– mice treated with neutrophil-activating therapy after administration of anti-Ly6G 

or isotype control (n=6). (U) Growth of B16 implanted in tumor-naïve or B16-cleared WT or 

Rag2–/– mice 50 days after initial treatment with neutrophil-activating therapy (WT cleared n=14, 

Rag2–/– cleared n=18, WT naïve n=10, Rag2–/– naïve n=15). Statistics: One-way ANOVA with 

Tukey’s multiple comparisons test (A, C, E-G, J-K, O-P), Two-way ANOVA with Tukey’s multiple 

comparisons test (B, D, H-I, L-N, Q), Log-rank test (S-T). For all dot plots, the line indicates the 

mean. Data are representative of 3 (R), 2 (A, U), or 1 (B-Q, T) independent experiments or 

pooled from 2 experiments (S).  
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Figure S6: Complement activation is induced by neutrophil-activating therapy. Related to 

Figure 4.  

(A) MFI of C3 deposition on myeloid cell populations in B16 tumors 4 hours after treatment of 

WT or TNFR KO mice with neutrophil-activating therapy (n=4). (B) MFI of C3 deposition on 

myeloid cell populations in B16 tumors 4 hours after treatment with the indicated components 

(n=4). (C-D) Representative immunofluorescence (C) and quantification (D) of C3 staining in 

B16 tumors 4 hours after treatment with the indicated components. Scale bars = 500 µm. (n=3) 

(E) MFI of C3 deposition on myeloid cell populations in B16 tumors 4 hours after treatment of 

Ly6G-depleted mice with neutrophil-activating therapy (n=5). (F-G) Representative 

immunofluorescence (F) and quantification (G) of C3 staining in B16 tumors 4 hours after 

treatment following Ly6G depletion. Scale bars = 500 µm. (n=4) (H) MFI of C3 deposition on 

myeloid cell populations in B16 tumors 4 hours after neutrophil-activating therapy following 

complement depletion by CVF (mock n=5, others n=7). (I) Representative immunofluorescence 

of C3 staining in B16 tumors 4 hours after neutrophil-activating therapy following administration 

of CVF. Scale bars = 500 µm. (J) Representative immunofluorescence of C3 staining in B16 

tumors 4 hours after treatment of WT or C3−/− mice. Scale bars = 500 µm. Statistics: Two-way 

ANOVA with Tukey’s multiple comparisons test (A-B, E, H), One-way ANOVA with Tukey’s 

multiple comparisons test (D, G). For all dot plots, the line indicates the mean. Data are 

representative of 3 (I), 2 (B, E-G), or 1 (A, C-D, J) independent experiments or pooled from 2 

experiments (H).  
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Figure S7: The alternative complement pathway induces neutrophil activation through 
C5a. Related to Figure 4.  

(A-B) Representative immunofluorescence (A) and quantification (B) of TUNEL staining in B16 

tumors 24 hours after treatment of WT or C3–/– mice. Scale bars = 500 µm. (n=3) (C) Growth of 

B16 tumors in mice depleted of complement with Cobra Venom Factor (CVF) prior to treatment 

with neutrophil-activating therapy (n=5). (D) Tumor growth and survival of B16-bearing WT or 

C3–/– mice following treatment with neutrophil-activating therapy (n=6). (E) Growth of B16 in 

mice treated following administration of anti-Factor B (n=7). (F) Tumor growth and survival of 

B16-bearing mice treated with neutrophil-activating therapy following administration of a 

blocking antibody targeting properdin (isotype n=7, anti-properdin n=6). (G) Tumor growth and 

survival of B16-bearing WT or Cfp–/– mice following treatment with neutrophil-activating therapy 

(n=4). (H) Growth of B16 in mice treated with neutrophil-activating therapy following 

administration of anti-C5 (mock n=12, anti-C5 n=5). (I) Tumor growth and survival of B16-

bearing WT or C6–/– mice following neutrophil-activating therapy (WT n=8, C6–/– n=9). (J) 

Growth of B16 in mice treated following administration of anti-C5AR1 (n=5). (K) Frequency of 

B16 tumor-infiltrating neutrophils 24 hours after treatment with neutrophil-activating therapy 

following CVF administration (mock n=2, others n=4). (L) Frequency of B16 tumor-infiltrating 

neutrophils 24 hours after treatment of WT or C3–/– mice with neutrophil-activating therapy 

(n=4). (M) MFI of CD11b on B16 tumor-infiltrating neutrophils in C3–/– mice 4 hours after 

neutrophil-activating therapy (n=4). (N) Activation marker expression on tumor APCs 4 hours 

after treatment of complement-depleted mice with neutrophil-activating therapy (n=5). (O) 

Percent lysis of B16 cells co-cultured with neutrophils isolated from treated tumors, stimulated in 

vitro with TNF + anti-CD40 + anti-gp75 in active serum in the presence of blocking antibodies 

targeting C5a, C5AR1, or isotype controls. Asterisks indicate significance relative to the six 

samples without elevated levels of lysis (n=4). Statistics: One-way ANOVA with Tukey’s multiple 

comparisons test (B, K-M), Log-rank test (D, F-G, I), Two-way ANOVA with Tukey’s multiple 

comparisons test (N-O). For all dot plots, the line indicates the mean. Data are representative of 

2 (C-E, J-O) or 1 (A-B, G) independent experiments or pooled from 2 experiments (F, H-I). 



 
Figure S8: Xanthine oxidase induces cell death downstream of neutrophil infiltration and 
secretion of LTB4. Related to Figures 5 and 6.  
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(A) LTB4 levels in B16 tumors following treatment with neutrophil-activating therapy (n=3). (B) 

LTB4 levels in B16 tumors 24 hours after treatment of WT or TNFR KO mice with neutrophil-

activating therapy (n=5). (C) LTB4 levels in B16 tumors 24 hours after treatment of WT or C3–/– 

mice with neutrophil-activating therapy (WT n=5, C3–/– n=4). (D) Representative TUNEL 

immunofluorescence in B16 tumors 24 hours after treatment following administration of the 

LTA4H inhibitor SC57461A. Scale bars = 500 µm. (E-F) Growth of B16 in mice administered 

SC57461A (E) (vehicle n=9, SC57461A n=8) or the BLT1 antagonist CP-105696 (F) (vehicle 

n=9, CP-105696 n=10) prior to treatment with neutrophil-activating therapy. (G) Oxidized 

glutathione percentage of total glutathione in B16 lysates 24 hours after neutrophil-activating 

therapy in WT or TNFR KO mice (n=5). (H-I) Representative immunofluorescence (H) and 

quantification (I) of TUNEL staining in B16 tumors 24 hours after treatment following GSH 

administration. Scale bars = 500 µm. (vehicle n=3, others n=4) (J) Tumor growth and survival of 

B16-bearing mice treated following administration of GSH (vehicle n=9, GSH n=10). (K) Growth 

of B16 in mice administered catalase during treatment with neutrophil-activating therapy (n=9). 

(L) Tumor growth and survival of B16-bearing WT or Ncf1–/– mice following treatment with 

neutrophil-activating therapy (WT n=11, Ncf1–/– n=15). (M) Frequency of neutrophils in B16 

tumors 24 hours after treatment with neutrophil-activating therapy following topiroxostat 

administration (n=4). (N) LTB4 levels in B16 tumors 24 hours after neutrophil-activating therapy 

following topiroxostat administration (topiroxostat n=7, others n=10). (O) Representative TUNEL 

immunofluorescence in B16 tumors 24 hours after treatment with neutrophil-activating therapy 

following administration of topiroxostat. Scale bars = 500 µm. (P) Growth of B16 in mice 

administered topiroxostat during treatment with neutrophil-activating therapy (vehicle n=9, 

topiroxostat n=8). Statistics: Two-way ANOVA with Tukey’s multiple comparisons test (A), One-

way ANOVA with Tukey’s multiple comparisons test (B-C, G, I, M-N), Log-rank test (J, L). For all 

dot plots, the line indicates the mean. Data are representative of 2 (B, G, J, M, P) or 1 (A, C-D, 

H-I, O) independent experiments or pooled from 2 experiments (E-F, K-L, N). 

  



Supplemental Table  

 

Name Sequence Source Identifier
Tnfrsf1a sgRNA1 AGACCTAGCAAGATAACCAG Doench et al., 2016 N/A
Tnfrsf1a sgRNA2 GATGGGGATACATCCATCAG Doench et al., 2016 N/A
Surface EGFP ATAGCAGGATCCGCCGCCACCATGGAGACCGAT

ACCCTCCTGCTGTGGGTTCTCCTGCTGTGGGT
GCCTGGCTCCACCGGTGATATGGTTAGCAAGG
GCGAAGAGCTCTTTACTGGCGTCGTGCCAATAC
TCGTCGAGCTGGATGGGGACGTTAATGGCCATA
AATTCAGCGTGAGCGGCGAGGGGGAGGGGGA
CGCCACCTACGGAAAGCTTACTTTGAAGTTTATT
TGCACTACAGGCAAGTTGCCTGTGCCTTGGCCT
ACACTCGTGACCACACTCACTTACGGGGTGCAG
TGTTTTTCTAGGTATCCTGATCACATGAAACAGC
ACGACTTTTTCAAGAGCGCAATGCCTGAAGGCTA
CGTCCAGGAGAGAACCATATTTTTCAAGGATGAT
GGTAACTACAAAACTAGAGCTGAAGTCAAGTTTG
AGGGGGACACCCTCGTGAACAGAATTGAATTGA
AAGGCATTGATTTCAAGGAGGACGGAAACATTCT
CGGACACAAACTGGAATATAATTACAATAGTCATA
ACGTCTATATCATGGCAGATAAGCAGAAGAACGG
GATTAAAGTCAATTTCAAAATCAGACACAATATCG
AGGATGGCTCCGTTCAACTGGCTGATCATTATCA
ACAGAACACCCCTATCGGCGACGGACCTGTTTT
GCTCCCTGACAATCACTACTTGTCTACCCAGTCC
GCTCTCAGCAAAGACCCCAACGAAAAGCGCGAT
CACATGGTTCTGCTGGAGTTCGTGACAGCCGCA
GGCATAACACTGGGGATGGACGAGCTTTACAAG
AATTCTATGGGAGGAGATAGTCAGGAGGTGACC
GTCGTGCCTCACTCCCTGCCCTTTAAGGTGGTC
GTTATCTCAGCTATACTTGCCCTTGTGGTTTTGA
CTGTTATATCCCTGATTATCCTCATCATGCTGTG
GCAGAAAAAGCCCCGGTAATCTAGAACTCGT

Synthesized by 
GeneArt, 
ThermoFisher 
Scientific

N/A

Table S1: Oligonucleotide sequences, Related to STAR Methods
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